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Summary

The tendency to design lighter structures and the increasing demands of cus-
tomers for comfort, increases requirements of the resilient mounting of ma-
chinery (e.g. engines) in vehicles. The conventional passive vibration isolators
might not be sufficient to reduce interior noise levels. Additionally, active iso-
lation techniques can be used to obtain a better isolation performance. This
research deals with the application of a combination of passive and active isola-
tion (so-called hybrid isolation) for resilient mounting of machinery. Methods
are introduced to model this kind of hybrid isolation system and in particular
to investigate the different actuator configurations and sensor strategies of the
active isolation part.

First the general theory is described to model hybrid isolation systems. The
complete isolation system is considered to consist of three subcomponents: a
source (e.g. an engine), a hybrid mounting system and a receiver structure
(e.g. a vehicle). The hybrid mounting system consists of passive vibration iso-
lators (for the passive resilient mounting of machinery, often rubber vibration
isolators are used) and an active isolation part. The active isolation part is in
turn composed of a set of actuators, sensors and a controller. The controller
drives the actuators in such a way that the sensor response is minimized. For
the considered applications, the sources are rotary or reciprocating machinery
and the response is dominated by its rotational speed. For this reason a har-
monic analysis is justified and a feedforward control strategy can be used to
minimize the sensor response. Two types of sensor strategies are considered:
the Active Vibration Control (AVC) approach where the sensors measure a
structural response to be minimized and the Active Structural Acoustic Con-
trol (ASAC) where the actuators minimize an acoustic error sensor response.

As the next step two models of hybrid isolation are considered and an-
alyzed with the described general theory. First a relatively simple model is
analyzed where a rigid mass (the source) is isolated in a hybrid way from a
simply supported receiver plate. The dynamics of the components are de-
scribed analytically and simulation results are presented for different actuator
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and sensor configurations.
The structures that are considered for the application of hybrid isolation

techniques are light-weight vehicles like transport vehicles and luxury yachts.
The second considered model is more representative for these applications and
is a numerical model from a laboratory setup. The finite element method is
used to describe the dynamic behavior. The goal of this model is not to obtain
an accurate description, but to obtain a representative model with the same
characteristics concerning the dynamic behavior as the considered applica-
tions. Furthermore, numerical tools are developed to simulate the vibrational
and acoustic responses of the whole system. The software developed is used
to investigate the effectiveness of different active control strategies. Important
attention points are the sensor and actuator configurations. Procedures are
derived to determine the optimal number and directions of the actuators for
the considered practical applications.

Besides the analysis of different actuator concepts and error sensor strate-
gies, attention is paid to the implementation. The actuator(s), the passive
vibration isolator(s) and the possible sensors have to be integrated in one hy-
brid mount. An important issue for the design of such hybrid components are
the isolation characteristics of the passive rubber vibration isolator. A proce-
dure is presented to obtain a multi-directional characterization of the isolation
behavior. The results are obtained with numerical finite element simulations
and the influence of the frequency of excitation and the static deformation is
considered. Further, an optimization procedure is described to derive rubber
material parameters with the help of standardized measurements of an entire
isolator.

Finally the concept of placing the sensors near the source of vibration is
investigated. Normally, active isolation systems only make use of sensors at
locations where the reduction is desired. The concept of placing the sensors
near the source has some advantages: easier implementation, the possibility
of obtaining a global response measure and less influence of flanking transmis-
sion paths or other disturbance sources as the considered disturbance. Two
near-source error sensor strategies are investigated: minimization of the in-
jected structural power and a technique to obtain a weighting matrix for the
near-source sensors based on the off-line measured response of a well-chosen
performance sensor set. An error-sensitivity analysis is performed to check
the robustness of the near-source error sensor concepts and measurements
at a representative laboratory setup were performed for validation. These
measurements show that the use of such off-line weighting techniques is very
doubtful for the considered applications of hybrid isolation.



Samenvatting

De tendens om steeds lichter te construeren en de hogere eisen van de consu-
ment met betrekking tot comfort, vereist dat er meer aandacht besteed moet
worden aan het geluidsarm isoleren van machines (bijv. motoren) in voertui-
gen. Het gebruik van conventionele passieve trillingsisolatoren is vaak onvol-
doende om het interieur geluid te reduceren. De isolatie kan verbeterd worden
door ook gebruik te maken van actieve isolatie technieken. Dit proefschrift
behandelt het toepassen van een combinatie van passieve en actieve isolatie
technieken (hybride isolatie) voor het geluidsarm isoleren van machines. Ver-
schillende methoden worden gëıntroduceerd om dit soort isolatie systemen te
modelleren en in het bijzonder om verschillende actuator configuraties en sen-
sor strategieën met betrekking tot het actieve isolatie gedeelte te analyseren.

Eerst wordt de algemene theorie behandeld om hybride isolatie systemen
te modelleren. Het gehele isolatiesysteem wordt onderverdeeld in drie compo-
nenten: een bron (bijv. een motor), een hybride ophanging en een ontvangst-
constructie (bijv. een voertuig). De hybride ophanging bestaat uit passieve
trillingsisolatoren (vaak worden rubberen trillingsisolatoren gebruikt) en een
actief systeem. Het actieve systeem bestaat weer uit actuatoren, sensoren
en een regelaar. De regelaar stuurt de actuatoren zodanig aan dat de sen-
sor responsie geminimaliseerd wordt. Voor de beschouwde toepassingen is de
verstoringsbron vaak een roterende of repeterende machine waardoor de res-
ponsie gedomineerd wordt door het toerental. Daarom is een harmonische
analyse gerechtvaardigd en kan er gebruik gemaakt worden van feedforward
regelstrategieën om de sensor responsie te minimaliseren. Twee typen sensor
strategieën worden beschouwd: actieve trillings onderdrukking (ACV) waarbij
de sensoren een structurele responsie meten en de actieve structurele akoesti-
sche onderdrukking (ASAC) waarbij de actuatoren een akoestische responsie
van de fout sensoren minimaliseren.

Vervolgens worden twee modellen van hybride isolatie geanalyseerd met de
beschreven algemene theorie. In eerste instantie wordt een relatief eenvoudig
model geanalyseerd waarbij een starre massa (de bron) op een hybride manier
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gëısoleerd wordt van de opgelegde ontvangstplaat. Het dynamisch gedrag van
de componenten zelf wordt op een analytische manier beschreven en simulaties
worden gepresenteerd voor verschillende actuator en sensor strategieën.

De ontvangstconstructies van de beschouwde toepassingen voor hybride
isolatie technieken zijn licht-gewicht constructies zoals bijv. transport sche-
pen en luxueuze jachten. Het tweede model dat wordt beschouwd is meer
representatief voor dit soort applicaties en is een numeriek model van een la-
boratorium opstelling. Het dynamisch gedrag wordt bepaald met de Eindige
Elementen Methode. Het doel is niet om een exacte beschrijving te verkrijgen
maar om een model te hebben met dezelfde karakteristieken als de beschouwde
applicaties. Verder zijn er numerieke methoden ontwikkeld om de structurele
en akoestische responsie van het gehele systeem te bepalen. De ontwikkelde
software wordt gebruikt om de effectiviteit van de verschillende actieve re-
gelstrategieën te onderzoeken. Belangrijke aandachtspunten zijn de sensor en
actuator configuraties. Er zijn procedures ontwikkeld om m.b.v. de ontwikkel-
de modellen het optimale aantal en richtingen van de actuatoren te bepalen.

Behalve de analyse van verschillende actuator concepten en sensor strate-
gieën is er ook aandacht besteed aan de implementatie. De actuator(en), pas-
sieve trillingsisolator(en) en eventuele sensors moeten uiteindelijk gëıntegreerd
worden tot een hybride mount. Belangrijk voor het ontwerp van dergelijke
hybride componenten zijn de isolatie karakteristieken van de passieve rub-
ber trillingsisolatoren. Er wordt een methode gepresenteerd om deze multi-
dimensionale isolatie karakteristiek te bepalen. Deze gebruikt eindige elemen-
ten analyses, waarbij de invloed van de excitatie frequentie en de statisch
deformatie beschouwd wordt. Ook wordt er een optimalisatie procedure be-
schreven om de materiaal parameters te bepalen m.b.v. gestandaardiseerde
metingen van een hele isolator.

Ten slotte is het concept van het plaatsen van de sensoren dicht bij de
bron onderzocht. Normaal gesproken worden bij actieve isolatie de sensoren
geplaatst op de locaties waar de reductie gewenst wordt. Het plaatsen van de
sensoren dicht bij de bron heeft enkele voordelen: de implementatie is een-
voudiger, er is een mogelijkheid om een maat voor de gehele responsie van de
ontvangstconstructie te verkrijgen en de flankerende transmissie paden of an-
dere verstoringen dan de verstoringsbron die beschouwd wordt hebben minder
invloed. Twee near-source sensor strategieën worden beschouwd: minima-
lisatie van het doorgeleid vermogen en een techniek waarbij de near-source
sensoren worden gewogen met een off-line bepaalde weegmatrix gebaseerd op
de responsie van een goed gekozen prestatie sensor set. Er is een fouten ana-
lyse uitgevoerd om de robuustheid te controleren en er zijn metingen aan de
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laboratorium opstelling gedaan ter validatie. Deze metingen tonen aan dat
de toepassing van off-line bepaalde weegmatrices onbruikbaar is voor de be-
schouwde applicaties van hybride isolatie.
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Chapter 1

Introduction

1.1 Background

Sound can be experienced in different ways. The open-air performance of
popular music causes a lot of sound which may be enjoyed by the visitors of the
show, but at the same time can be experienced as unwanted sound, or noise, by
the neighbors who would prefer an uninterrupted sleep. Due to the increasing
growth of the human population, the noise problem is becoming more and
more important. Noise and vibrations are also experienced in vehicles like cars,
aeroplanes and ships. The tendency to reduce the weight of the construction
to save material and production costs and to reduce fuel consumption leads to
even more problems concerning the interior noise levels in vehicles. Also, the
stricter demands of customers with respect to comfort require extra attention
for the reduction of the interior noise.

Noise problems in vehicles may arise from different sources such as engines,
gearing, exhaust, vehicle tyres and ship propellers. An example of the interior
noise problem caused by an engine is shown in Figure 1.1. The structural
vibrations of the engine and gearbox are transmitted to the cabin of a ship
and cause interior noise. The present thesis concerns with resilient mounting
of such machinery. The machinery is mounted with a combination of active
and passive isolation techniques, so-called hybrid isolation, in such a way that
the noise levels in the accommodations and cabins of the vehicle are reduced
for a better comfort. The main goals are the development of models and tools
for the analysis of such hybrid isolation systems and to investigate the aspects
of active isolation near the noise source to reduce interior noise levels.

1



2 Introduction

engine

mounts

gearbox

Figure 1.1: Interior noise in a ship caused by the structure-borne sound transmission
from the engine to the ship hull.

accommodation engine room

1.2 Structure-borne sound

In general three types of sound sources are distinguished: sources that cause
vibrations in solids (structure-borne sound such as excitation by rotating ma-
chinery), liquids (fluidborne sound such as cavitation) and gases (airborne
sound such as a turbulent jet). The same distinction can be made for the
sound transfer from the sound source to the surrounding environment, i.e.
through solids, liquids and gases. Machinery in vehicles, like the engine, offer
many sound transfer paths to the surrounding environment [134]. The en-
gine radiates sound directly to the surrounding air, which is an example of
an airborne sound path. The engine also transmits vibrations through the
support mountings to the receiver structure. The vibrations of the receiver
structure result in interior noise of the vehicle. This sound transfer path,
which is also the source of the interior noise shown in Figure 1.1, is an exam-
ple of a structure-borne sound path which is an important transfer path for
lightweight vehicles with low damping. This sound transfer path is the main
theme of this work and the isolation of the machinery is a possible solution
for attenuation of the structure-borne sound.

Resilient mounting systems in vehicles contain several mounts with multi-
directional vibration transmission paths. To describe the performance and
response of the whole system, the concept of transmitted power is often
used [46, 47, 48]. The transmitted power describes the vibrational energy
flow through the whole mounting system due to the energy dissipation in the
receiver structure. For this reason it is an interesting measure to determine
the performance of an isolation system, but possibly also an interesting con-
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trol strategy for active isolation purposes [86]. In Figure 1.2 the energy flow
in an isolation system is depicted. The vibrating source injects power into the
mounting system. The mounting system dissipates some of the injected power
due to the structural damping and transmits a part to the receiver structure.
The transmitted energy through the mounting system is the energy that is dis-
sipated in the receiver structure and can be roughly subdivided into dissipated
energy due to the internal damping of the structure and the radiated sound
energy caused by the interaction with the surrounding environment (like air or
water). If it is possible to measure the transmitted power, this might provide
a useful quantity to use for active isolation purposes.

source

mounts

receiver

power
input

transmitted
power

radiated
sound power

structurally
dissipated
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Figure 1.2: The energy flow in an isolation system.

1.3 Isolation of structure-borne sound

Broadly speaking there are two classes of isolation problems: cases where a
vibrating body (a machine or engine) is isolated from a receiver structure
(a car body, ship hull or aircraft fuselage) and cases where the body (such
as sensitive equipment) is isolated from a vibrating source (such as ground
vibrations). In both problems the source of vibrations may be deterministic
or random. Generally speaking, problems of the first kind have a deterministic
source of vibration when the source is a rotating or reciprocating machine. The
second class of problems deals predominantly with vibration sources that are
stochastic. An example is the design of active vehicle suspension systems. The
body to be isolated is the passenger cabin and the source of excitation is the
unknown and variable height of the road surface, being randomly distributed.
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In this thesis problems of the first kind, which involve isolation of vibrating
machinery from a receiver structure, are considered. These kinds of isolation
systems can be subdivided into three subsystems or components: a source
of vibration (e.g. an engine), a supporting mounting system (consisting of
several mounts), and a receiver structure (the vehicle itself). In Figure 1.2 a
typical isolation system is depicted and shows the different components. The
vibrations transmitted by machines or other sources cause unwanted effects
such as noise radiation. Generally speaking, the structure-borne sound trans-
mission causes sound radiation, while low frequency vibrations cause fatigue
and failure. The most simple solution to prevent these unwanted effects, is
isolation of the source from the receiver structure. In this thesis it will be
shown that a description of the dynamic behavior of the source, mounting
system and receiver structure is needed for a correct modeling of the complete
isolation systems.

1.3.1 Passive isolation and dissipation

Usually machinery is placed on a resilient passive mounting system to reduce
the structure-borne sound [122]. In passive vibration isolation two basic phe-
nomena play a role: isolation of the machinery and dissipation of the transmit-
ted energy [135]. The first phenomenon follows from the impedance mismatch1

introduced by the insertion of vibration isolators between the source and re-
ceiver. In general the source and the receiver are relatively heavy and stiff and
have a high impedance. The mounts have a low stiffness resulting in a low
impedance. In practice this is realized by placing the machinery on rubber
isolators or metal springs. The energy remains in the source and the dynamic
uncoupling results in a higher source vibration level. The larger the stiffness
or impedance mismatch, the better the isolation. The second phenomenon is
based on dissipation of the structure-borne sound energy in the mounts.

The mounting system is traditionally designed on low-frequency require-
ments: the mounting support has to be sufficiently stiff to limit low-frequency
motions and static deformations (e.g. in the case of a ship engine the seaway
motions and static deformations due to thrust forces and torques). This poses
a lower limit on the static stiffness of the mounting system, so the effect that
can be achieved with the concept of isolation is limited. Especially for flexible
and lightweight receiver structures (i.e. structures with low stiffness), very
flexible mounts are needed to create the stiffness mismatch needed for the
isolation effect and to ensure passive isolation of the structure-borne sound

1The term impedance is the ratio of the force and the velocity and is explained in more
detail in section 2.4.1.
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at high frequencies. Clearly, there are conflicting demands for the design of
passive resilient mounting systems.

1.3.2 Active isolation

The effectiveness of a passive resilient mounting system is limited due to
conflicting design demands. To achieve additional attenuation in the low-
frequency region active isolation techniques can be used. An active system
typically consists of sensors to detect the response of the system, actuators as
the external energy source to drive the system and a controller to process the
sensor signals and to drive the actuators. The actuators (e.g. electrodynamic
actuators) can be placed for example under the engine support and are driven
by the controller in such a way that the response at the sensors (e.g. micro-
phones or accelerometers) is minimized. The different components concerning
the concept of active isolation of a ship engine are depicted in Figure 1.3.

Active control strategies can be divided into two categories: feedforward
and feedback. Feedback strategies are necessary for systems without informa-
tion about the disturbance of the system. The sensor signals for this kind
of system are fed back to the controller. In lightweight vehicles the interior
noise is often dominated by the structure-borne sound from the engine with
the largest contributions originating from the engine orders. The engine or-
ders are frequencies related with multiples of the number of revolutions of the
engine. The rotary or reciprocating machinery in fact cause a deterministic
excitation and for this reason feedforward control strategies can be used to
tackle the control problem. The reference signal that is needed for such con-
trol strategies is determined by measuring the rotational speed of the engine.
This reference signal is used as information by the controller after which the
control signal is determined, hence the name feedforward strategy.

1.4 Hybrid isolation

Due to the limited isolation effect of passive resilient mounting systems in flex-
ible and lightweight vehicles, extra attention might be required with respect
to the reduction of the interior noise. For this reason the purpose of hybrid
isolation is an interesting option: the isolation performance of a passive isola-
tion system is enhanced by integration with active isolation techniques. The
concept of active isolation is especially effective in the low-frequency region,
whereas the passive vibration isolation techniques perform well at high fre-
quencies.
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1.4.1 Application of hybrid isolation

An interesting application of hybrid isolation techniques is in ships, because of
their relatively lightweight construction. Heavy machinery like the engine and
the gearbox are needed to drive the ship. These components are important
sources of interior noise and the effect of passive isolation is limited due to
the strict static requirements of suppressing seaway motions. For this kind of
application it can be worthwhile to implement the relatively expensive equip-
ment needed for active isolation. In this thesis, these kinds of applications are
considered with respect to the implementation of hybrid isolation systems.

The components of a typical hybrid isolation system for a ship are shown
in Figure 1.3. The engine is mounted on the passive vibration isolators, which
are in most cases rubber mounts. Also an additional active isolation system
is shown consisting of actuators (integrated with the passive mounts), sensors
and a controller to determine the actuator signals. The goal is minimization
of the structure-borne sound from the engine. This means that the other
sound transmission paths are not considered in this thesis. The structure-
borne sound from the engine is strongly related to the rotational speed of the
engine. For this reason a multi-harmonic excitation of the receiver structure
is assumed. This information can also be used for the controller (indicated by
the reference signal) and a feedforward control strategy is used for this kind
of isolation problem. An important factor to consider for the performance of
the active isolation part is the choice of sensors and sensor locations that are
used as input for the controller. The response of the (weighted) sensor signals
minimized by the controller is called the error criterion or cost function.

It can be seen in Figure 1.3 that the actuators are situated near the source
as part of the hybrid mounts. The sensors are depicted at two locations: at the
receiver structure (e.g. the passenger accommodations) and near the mount-
ing system. The first kinds of control strategies have already been analyzed
in practice and their functioning has been proved successful. Winberg, Jo-
hansson and Lagö [80] presented experimental results of an active vibration
isolation system in a boat with microphones as error sensors in the passenger
accommodation. They showed that a good reduction could be obtained at
the microphones. Their study provides a lot of insight as several problems
arose with the implementation of the active isolation system. An important
problem is the influence of the different disturbance sources and their trans-
mission paths. The two main noise sources of the considered application were
the propeller BPF (Blade Passage Frequency) and the engine orders. The en-
gine mounts were the most important transmission path for the engine. The
same transmission path is important for the noise caused by the propeller;
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Figure 1.3: A schematic overview of a hybrid isolation system for a ship engine.
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the propeller vibrations are also transmitted through the mounts to the ship
hull. Reduction can only be obtained when the frequency components of the
two disturbance sources are the same and when the actuators were placed at
the locations of the mounts, meaning that only vibrations transmitted along
these specific transmission paths can be attenuated effectively. However, the
propeller vibrations, besides the transmission path through the propeller shaft
and engine mounts, also excited the hull of the ship directly through the water.
The latter transmission path is a so-called flanking path and its contribution
was very difficult to attenuate by the actuators. The contribution from this
flanking path was not dominant, so good reductions could still be obtained.
This means that for an effective implementation of an active control system,
the most dominant sources and flanking paths need to be identified.

1.4.2 Terminology

In this work various terms are used to define the different components with
respect to the hybrid isolation of structure-borne sound. The term resilient
mounting system is used to define the support of the source. This mounting
system can be passive (passive mounting system), active (active mounting
system) or a combination of both (hybrid mounting system). The hybrid
mounting system consists of a combination of passive vibration isolators or
mounts and actuators. The term (hybrid) isolation system describes the whole
system including source, (hybrid) mounting system and receiver.
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1.4.3 Models

In this thesis the design and performance of hybrid mounting systems is stud-
ied with the use of mathematical models. This has several advantages. First
of all, the influence of the model complexity, like the number of natural modes
in the frequency range of interest, can be more easily studied. Another ad-
vantage is that many of the complications concerning the practical implemen-
tation play no role or are more easily ‘controlled’ like flanking paths, other
disturbance sources and convergence of the controller. Furthermore, the mod-
els allow a thorough investigation of all kinds of error sensor strategies. Even
the performance of error sensor strategies which are difficult or impossible to
implement in real applications (e.g. minimization of the kinetic energy) can be
investigated. It is also possible to determine all kinds of dynamic and acoustic
responses of each subcomponent at different locations (e.g. at other locations
then the error sensors).

However, it is important to properly assess the use of mathematical models
in this thesis. It is impossible to make an exact model to describe the dynamic
behavior of complex structures such as a ship. The dynamic behavior of the
model will always differ from the true behavior of the structure. However,
when the model is representative for the considered applications, trends can
be derived that are generally valid for this type of application. The practical
implementation is of course another problem and may result in a decrease of
the performance due to restrictions that are not considered in the model. It
must be kept in mind that the available information for practical applications
is very limited: normally only a limited set of measurements can be performed.
This is the only information about the system that can be used (derived from
the analyzed models) to deduce rules of thumb for the design of isolation
systems in practice.

1.4.4 Near-source error sensor strategies

For the implementation of active isolation systems in vehicles it is advanta-
geous to locate the sensors near the resilient mounting system for reasons
of easier practical implementation and cost reduction. Another advantage of
these so-called near-source error sensor strategies, is that the error sensor re-
sponse is dominated by the disturbance source that has to be reduced. The
influence of other disturbance sources and flanking paths have less influence
on the error sensor response and the active control performance. This is ex-
plained in more detail in chapter 6. However, the use of sensor strategies near
the source of vibration is not straightforward. Winberg et al. [80] presented
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results with acceleration sensors in the axial direction of the mounts as error
sensors. Although the vibration level was reduced at the error sensors, the
interior noise was hardly affected. Besides that, the robustness of such strate-
gies may be a problem; the error sensor response may be sensitive to small
measurement errors.

The first concept of a near-source sensor strategy is the minimization of
the transmitted power. This concept has already been analyzed with models
and experiments by e.g. Pan and Hansen [102] and by Howard [53]. However,
the considered models were relatively simple and cannot be compared with
complex receiver structures like vehicles. A great disadvantage is that the
error criterion of transmitted power is very sensitive to measurement errors at
the sensors [41]. This means that relatively small measurement errors result
in an unreliable measure for the transmitted power and consequently result in
a bad active control performance.

An important topic in this work is the investigation of near-source error
sensor strategies for hybrid isolation systems in complex receiver structures like
ships. Besides the minimization of the transmitted power, another approach
will be addressed in this thesis. This approach is based on an efficient weighting
of a set of near-source sensor signals in such a way that the response at the
receiver structure is reduced.

1.4.5 Hybrid mount

For the actual implementation of hybrid isolation, the passive and active iso-
lation concepts will often be integrated into one module: the hybrid mount.
The hybrid mount consists of a combination of passive vibration isolators (in
most cases rubber vibration isolators are used for the considered applications),
actuators and, possibly, sensors. For purposes of cost reduction, the number
of actuators must be as small as possible. Also, the force that can be exerted
with commercial actuators is limited. For performance and cost optimization
of hybrid isolation modules, it is important to have a good characterization
of the passive vibration isolators. The passive mounting system has a large
influence on the actual performance and actuator configuration. In this work
a numerical model is described to determine the multi-directional vibration
transfer and isolation characteristics of rubber vibration isolators. Also, at-
tention is paid to the characterization of the rubber material properties, which
is very important for the passive isolation behavior. A procedure is introduced
to derive the material parameters of the rubber material with the help of some
standard measurements on the entire isolator. With help of the obtained mate-
rial parameters, a complete description of the isolation behavior of the isolator
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can be obtained with a numerical model.

1.5 Objectives

The objective of this study is to develop (numerical) models for hybrid isola-
tion systems and to use these models for studying strategies for cost-effective
system performances. The models are used as design tools to investigate the
effectiveness of different control strategies. Another important aspect is the
study of how to determine the number, location and direction of the actuators.
From the viewpoint of cost-effective design, it is also important to reduce the
number of actuators and sensors. With respect to the active isolation part,
attention will also be paid to the use of near-source control strategies for
practical applications with realistic receiver structures. The final step in the
design of hybrid isolation concepts is the hybrid mount. An important point of
attention for the design of the hybrid mount is the passive isolation character-
ization that is needed and this is analyzed in more detail for rubber vibration
isolators.

1.6 Outline

The present chapter covers the general definitions in isolation and introduces
the concept of the use of hybrid isolation of structure-borne sound. In the next
chapter the general theory is described to analyze hybrid isolation systems.
Both the modeling of the structural dynamic behavior as well as the acoustic
behavior of the models are treated.

In chapter 3 the general theory is used to describe an example of a hybrid
isolation system. The model describes the hybrid isolation of a rigid mass from
a simply supported plate as receiver structure. The relatively simple configu-
ration allows an analytical description of the dynamics of the subcomponents.
However, general tendencies can still be shown using this model.

In chapter 4 a more representative system is treated for the considered
applications of hybrid isolation. A model is made of a laboratory setup that
has a dynamic behavior with the same characteristics as can be found in
complex structures like for example ships and vehicles. This model is also
analyzed with the theory described in chapter 2, but the dynamics of the
subcomponents are determined from numerical models. Different error sensor
strategies are analyzed and rules of thumb are presented to determine the
number of actuators and the directions of the actuators for an effective active
isolation.
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Chapter 5 deals with the modeling of rubber vibration isolators. In this
chapter a numerical model of a rubber vibration isolator is presented to deter-
mine its multi-directional passive isolation characteristics. The influence of the
static pre-deformation of the isolator and the frequency dependent behavior
are analyzed in more detail. Also attention is paid to the determination of the
rubber material parameters with the help of standardized measurements of the
entire isolator. A correct description of the material parameters is essential to
obtain a reliable and complete description of the isolation behavior.

The use of near-source error sensor strategies has some advantages for
the isolation systems that are considered in this study. This is explained in
chapter 6 where two concepts of near-source error sensor strategies are studied.
First, the minimization of the transmitted power to the receiver structure is
considered. This error sensor strategy is known to be very sensitive to small
measurement errors. For this reason another near-source error sensor strategy
is introduced: weighting of a near-source error sensor set based on the response
of a different sensor set that is actually desired to be minimized. Special
attention is paid to the robustness of the near-source error sensor strategies.
Experiments on the laboratory setup were performed to analyze the different
procedures for determining the weighting matrices.

Finally, in chapter 7 the main results and conclusions are summarized and
discussed.
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Chapter 2

General theory of hybrid
isolation systems

2.1 Introduction

In the first chapter it was explained that passive isolation may not sufficiently
reduce the interior noise levels in lightweight structures. A solution is to
improve the isolation performance in the low frequency region with the use of
active isolation techniques. In this chapter the general theory is presented for
modeling the vibrational and acoustic behavior of such combined passive and
active isolation systems. The goal of these models is to enable the investigation
of different hybrid isolation configurations.

The dynamics of the components and the complete isolation system can
be analyzed with models or with measurements. In this thesis most atten-
tion is paid to the analysis of the complete isolation systems with models.
As explained in chapter 1, models of the isolation system are made in such
a way that their behavior is representative for the considered applications,
though without modeling the dynamic behavior exactly. The general trends
found are assumed to also be valid for practical applications. Performing
measurements to determine the behavior of the isolation systems may be very
time-consuming, whereas models can be easily used to determine the different
responses for different actuator and sensor configurations. In this chapter, a
general representation is used to model the complete hybrid isolation systems.

To put the models into perspective, first a short review of the literature re-
garding analytical models of active isolation systems is presented in section 2.2.
The literature survey is split into two parts. First a review is given of analytical
models to describe the structural transmitted power flow in isolation systems.

13
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In the second part, a short overview of analytical models of active isolation
systems is presented. Subsequently, some simple discrete dynamic models are
analyzed and their shortcomings and restrictions are described in section 2.3.
These models are quite simple but clearly show some basic physical principles
of the dynamic behavior of isolation systems.

After the introduction of the basic terms and principles with the help of
discrete analytical models, a general model description is given to calculate
the dynamic response of the complete isolation system in section 2.4. A hy-
brid isolation system in its most general form consists of a source, a mounting
system to support the source and a receiver structure. An approach is adopted
that was also used by Gardonio [40, 41]. This approach distinguishes ports or
junctions at the connection points between the hybrid isolation components
(thus the source, mounting system and a receiver structure). The dynamics
of the system are consistently described by the force and the velocity vectors
at these junctions. An advantage of this way of modeling is that the models
are solely described by the forces and velocities at the locations of interest,
resulting in compact models. Another advantage is that the way to define the
dynamics of the sub-components itself is not restricted: different techniques
can be used such as analytical methods, numerical methods like the Finite
Element Method, or measurements. Furthermore, the used port-description
allows the description of the multi-directional vibration energy transmission
and also allows the use of complex models of each component. These prop-
erties are important for the considered applications, because vibration trans-
mission in vehicles occurs along several transmission paths of the mounting
system (multi-directional vibration transmission by multiple mounts) into a
receiver structure with a complex dynamic behavior. Another advantage is
that the model properties of the components can be exchanged rather easily,
for example by using mounting systems with different material properties. A
requirement for the use of a port description is that linear models be used
to describe the dynamic behavior. The use of this kind of model is justified
because the dynamic displacements of the components are small, especially at
the higher frequencies. The interior noise levels generated in the considered
applications are mostly directly related to some discrete excitation frequencies
of the source (for example the engine and the transmission in a ship). For this
reason a harmonic analysis is allowed, resulting in frequency dependent forces
and velocities at the junctions.

The structural vibrations of the receiver structure in the audible frequency
region cause the interior noise. The surrounding medium is excited by the
normal surface velocity distribution of (a part of) the structure, which causes
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Figure 2.1: Analysis of hybrid isolation systems.

the pressure perturbations that are experienced as noise. For this reason, the
structural dynamic models are extended with an acoustic analysis to have a
more representative model of the considered applications of hybrid isolation.
This is described in section 2.5. The normal surface velocity distribution of (a
part of) the structure is used as input for the acoustic analysis. In this work,
the free field radiation of a part of the receiver structure is modeled with the
Rayleigh integral method. Besides free field radiation, the acoustic radiation of
a part of the receiver structure into an acoustic enclosure is considered. The
enclosure is a simple model for passenger accommodation in a vehicle and the
acoustic response in the enclosure is determined with a modal superposition
technique.

After the determination of the structural and the acoustic behavior of the
isolation system caused by the disturbance mechanisms of the source and the
actuators, the active isolation response can be calculated with the analysis of
different error sensor strategies related to the acoustic and structural response
of the receiver structure. For this purpose the optimal control procedure is
used, implying that an ideal feedforward controller is used to tackle the con-
troller problem (see section 2.6). A schematic overview of the whole procedure
is shown in Figure 2.1.

Finally, some conclusions are drawn and presented in section 2.7.
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2.2 Literature survey

This literature survey is subdivided into two parts. First a short overview is
given of models that describe the structure-borne energy flow in structures
and isolation systems. In the second part an overview of the models of com-
plete active isolation systems is presented. The dynamics of most models are
described analytically.

2.2.1 Dynamic modeling using power flow

In general an isolation system consists of several transmission paths, formed
by the mounts that couple the source with the receiver structure in different
directions. For this reason a large number of parameters is needed to de-
scribe the structural vibration transmission correctly. The transmitted energy
flow through the mounting support to the receiver structure is a convenient
measure to quantify the performance of multi-point mounting systems with
multi-directional vibration transmission. Good results have been obtained by
dividing the isolation system into individual components such as a source, a
mounting system and a receiver structure. In this way the models can be kept
relatively small, because a port description can be used to describe the dynam-
ics at the connection or junction points of the different components only. The
dynamic behavior is described by the transfer functions from the different exci-
tation mechanisms (like the disturbance and actuator forces) to the responses
(e.g. the velocity or forces) at the connection points between the different
components for each degree of freedom. Goyder and White [46, 47, 48] used
a novel approach by introduction of power flow techniques to describe the vi-
bration isolation and power transmission. They showed results of this concept
for complete isolator systems with a spring-like one-degree-of-freedom isola-
tor and a receiver structure consisting of a beam, plate or a beam-stiffened
plate. Only the out-of-plane vibration direction of the receiver structure is
considered. Other authors have also used this approach like Pinnington and
White [110] to describe the power flow to a resonant and non-resonant beam.
They investigated when the beam structure can be considered as infinite for
a correct prediction of the frequency-averaged power. Pinnington [109] also
studied the vibrational power flow to a flexible seating by two one-degree-of-
freedom mounts, by means of experimentally measured transfer matrices. The
influence of the rotational degrees of freedom in addition to the translational
motions were shown to be of importance for the power transmission to beam
or plate-like structures (Koh and White [72, 73, 74], Petersson [105, 106] and
Sanderson [114]). Pan, Pan and Hansen [103] studied the power flow in a
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vibration isolation system with a rigid source, multiple vibration isolators and
a rectangular plate as receiver structure. The isolators were each modeled as
an assembly of six one-degree-of-freedom translational and rotational springs.
Li and Lavrich [77] analyzed a similar vibration isolation system, except that
a beam-reinforced plate was used as receiver structure. Li and Daniels [76]
studied the power transmission of a vibration isolation system to a support-
ing cylindrical shell. Xiong, Xing and Price [141] introduced a generalized
mobility/impedance1 power flow model and considered a raft isolation system
consisting of five subsystems (two rigid bodies as sources, each connected with
four springs to a flexible raft. The raft was modeled as a free-free beam and
connected with a clamped-clamped flexible beam as receiver structure, see
also Figure 1.3). These articles only consider the power flow in the isolation
system and not the influence of the active isolation control on the transmit-
ted power. Also, the mounting systems are assumed to be linear. Further
research has been done on the analysis of power flow through a nonlinear
mounting system like Royston and Singh [113]. Generally speaking, it can
be said that the transmitted power is an interesting measure to describe the
global response of the whole dynamic system. This is especially interesting
for the considered applications where the number of transmission paths to the
receiver structure can be quite large. The response can still be characterized
by just one measure: namely the transmitted power. A necessary condition
is that the multi-directional vibration transmission is determined correctly for
each transmission path.

2.2.2 Active isolation and power flow

In the preceding subsection a literature overview was given of transmitted
power as a measure to describe the dynamic behavior of isolation systems.
This section deals with models of active isolation systems.

Feedforward control in active vibration isolation systems

Besides a good description of the multi-directional vibration and sound radi-
ation, the transmitted power flow was also be considered as an error criterion
for active isolation purposes [86]. An overview of relevant papers concern-
ing analytical models of active isolation systems is given in Table 2.1. Most
earlier studies only deal with isolation systems having a single mount vibrat-
ing in one direction with a rigid source and a fixed base or a one-degree-

1The mobility y is defined as the ratio of the velocity v and the force f and the impedance
z as the ratio of the force and the velocity, see also section 2.4.1.
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of-freedom mass-damper-spring system as receiver structure for feedforward
control strategies [38, 59]. More realistic models with a flexible receiver struc-
ture were studied by several authors. Pan, Hansen and Pan [102] presented a
model that isolated a rigid body from a thin beam with a single mount and
an actuator in the axial direction of the mount, and showed that it was pos-
sible to reduce the power transmission with feedforward control. They also
considered a model with two active isolators and a flexible panel as receiver
structure [100]. Experimental results were also included in these two papers.
Koh and White [72, 73, 74] presented an isolation model consisting of a rigid
seating block mounted on a flexible beam and plate. They considered only the
out-of-plane DOF of the plate, caused by the normal force and in-plane mo-
ments. The influence of the moment introduced by the actuators (secondary
moment) was investigated with a feedforward control strategy that minimized
the transmitted power. Howard, Hansen and Pan adapted the models pre-
sented in [100] and [102] to an active isolation system with a flexible cylin-
drical shell as receiver structure [54]. The latter model was extended with an
intermediate flexible plate as a raft model by Pan and Hansen [101]. Gardonio,
Elliott and Pinnington [40, 41] presented an active isolation system consist-
ing of a rigid source, two cylindrical beams as mounts and a flexible plate as
receiver structure. Different feedforward control strategies were studied: be-
sides minimization of transmitted power also minimization of (a combination
of) forces and velocities were considered at the connection locations of the
mounts with the receiver plate. The transfer matrices of the isolation system
were described by mobility and impedance matrices, which makes it very flex-
ible for analysis with other source, mount or receiver components. Gardonio
and Elliott [39] used the same approach in another paper to describe the vi-
bration transmission between two plates. Only the out-of-plane motion of the
plates (source and receiver) was considered, and also experimental results were
presented. The characteristic property that the transmitted power is closely
connected to a global measure of the receiver response makes this measure
very interesting as an error criterion of the global response. For this reason,
the transmitted vibrational power is studied and analyzed as one of the error
criteria in this thesis.

Feedback control in active vibration isolation systems

Feedback control strategies are also used for active isolation and many pa-
pers have been presented on this subject. Most earlier studies with feed-
back strategies (also active damping) only deal with isolation systems hav-
ing a single mount vibrating in one direction with a rigid source and a fixed
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base or a one-degree-of-freedom mass-damper-spring system as receiver struc-
ture [69, 81, 116, 126]. Sciulli and Inman [115] presented a one-degree-of-
freedom model with a flexible beam receiver. Several (velocity and position)
feedback strategies were considered with respect to their performance for dif-
ferent mount frequencies (the frequency of the rigid body mode of the source
mass on the mount) with respect to the eigenfrequencies of the modes of the
flexible receiver. Huang, Elliott and Brennan [55] studied an isolation sys-
tem with a flexible or rigid source connected with four mounts to a flexible
receiver structure. The flexible source and receiver are plates and the mounts
were modeled as linear ideal springs with viscous dampers. Decentralized ve-
locity feedback was considered and also experimental results were presented.
Xiong, Xing, Price and Wang [142] presented a general model to examine the
power flow in an isolation system with flexible substructures and with a force
feedback control. They studied an isolation system with three substructures:
a rigid mass as source and a flexible simply supported panel as receiver struc-
ture. The source was connected with two mounts to the receiver structure.
The mounts were modeled as cylindrical tubes with structural damping. Only
the bending vibration of the plate was considered. A more general formula-
tion to analyze the power flow of active isolation systems with feedback control
strategies was presented by Xiong, Xing and Price [140]. In their paper an
example of an isolation system with three substructures was studied: two rigid
masses as sources and a flexible panel as receiver structure. Each source was
connected with two mounts to the receiver structure, which are modeled as
linear springs with structural damping. Only the translational motion in the
normal direction of the plate was considered. They used the same formulation
in [141]. In this paper an example of an isolation system with three substruc-
tures is studied: two rigid masses as sources and a flexible panel as receiver
structure. Each source is connected with two mounts to the receiver struc-
ture, which are modeled as cylindrical tubes with structural damping. Only
the translational motion in the normal direction of the plate is considered.
The performances of absolute velocity feedback, relative velocity feedback and
a combination of these two were investigated.

However, for the applications considered in this work, feedback strategies
are not the best solution. In the control of lightly damped structures, feed-
back control is mainly used for supplying active damping [112]. The closed
loop response of the system, thus the behavior of the system including the
controller, shows a reduction of the resonance peaks. When a reference signal
is available, it is better to use feedforward control strategies. Unlike active
damping, which can only attenuate the disturbances near the resonances, the



20 General theory of hybrid isolation systems

feedforward strategy works for any frequency and attempts to cancel the dis-
turbance completely. Another advantage is that feedforward control can be
used for higher frequencies and has therefore already been successfully ap-
plied in acoustics. The disadvantage is that the global response (thus also
the response at locations where no error sensors are attached) is not neces-
sarily reduced. More details about the implementation of feedforward control
strategies can be found in references [127, 128].

In this thesis the main goal is suppression of structure-borne sound in com-
plex vibrating structures caused by rotary or reciprocating machinery. The
structure-borne sound transmission is dominated by the response at frequen-
cies components that are directly coupled with the rotational speed of the
machinery. For this reason the models described in this thesis assume har-
monic excitation. As stated in the introduction chapter, the control effort for
this type of problems is in general tackled by an adaptive feedforward strategy.
The models from the literature in general have quite simple receiver structures.
The applications that are considered to be interesting for hybrid isolation are
e.g. vehicles or ships with quite complicated receiver structures. For this
reason, a general model is introduced that makes use of a port description.

2.3 Discrete analytical models

To give the reader a first impression about isolation and the terminology used,
some simple discrete dynamic models of isolation systems are analyzed as a
start. Also some general tendencies can already be shown with these kinds of
models.

The discrete models are composed of highly idealized components like
masses, springs and dampers. The masses are assumed to have inertia with-
out dimension (point masses) and the springs and dampers are assumed to be
massless. The dynamic systems are excited by disturbance forces and isolated
actively by actuator forces acting on the masses. The number of equations
of motion describing the dynamic behavior of these discrete isolation systems
is determined by the number of masses or the number of degrees of freedom
(DOFs). First the passive isolation is treated. Then some basic active iso-
lation concepts are analyzed in more detail. The last subsection treats the
limitations of this kind of model.

2.3.1 Passive isolation and dissipation

A schematic picture of an idealized two-degree-of-freedom passive isolation
system is given in Figure 2.2(a) [51]. The source is modeled by prescribing
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a harmonic displacement w at the top, the mount is a spring/damper combi-
nation and the receiver structure as a two-degree-of-freedom system without
damping. The equations of motion of the two masses are [131]:

k (w − x1) + c (ẇ − ẋ1) − k1 (x1 − x2) = m1ẍ1, (2.1a)

k1 (x1 − x2) − k2x2 = m2ẍ2, (2.1b)

where x1 and x2 are the displacements of the masses m1 and m2 respectively,
k1 and k2 are the stiffness coefficients of the connecting springs related to the
receiver structure and k and c are the stiffness and viscous damping coefficient
of the mount respectively. Two damping mechanisms are considered: a vis-
cous damper with damping coefficient c and structural damping in the mount
defined by a loss factor η, which is described as a complex spring stiffness
k = k′(1 + jη) [23]. The loss factor in fact indicates the ratio between the
dissipated energy and the restoring mechanical energy during one vibration
period. When it is assumed that the prescribed displacement is harmonic, a
complex notation can be used:

w(t) = wejωt, (2.2)

where t is the time, w is the amplitude of the source displacement, j is the
imaginary unit and ω is the angular frequency. The damping force exerted by
the viscous damper is proportional to the velocity. This means that for a har-
monic excitation, the damping force is proportional to the frequency (when the
amplitude of the displacements remains unchanged). This can be seen when
the velocity is calculated by taking the time derivative of equation (2.2). Con-
sidering the structural damping model, the force exerted due to this damping
mechanism is frequency independent. This damping mechanism is only de-
fined in the frequency domain. In reality, the damping behavior of passive
isolators is a combination of these two mechanisms.

In Figure 2.2(b) the transmissibility, which is defined as the displacement of
mass m2 divided by the displacement of the source w, is shown for a harmonic
excitation of the source. The depicted reference solution is the transmissibil-
ity without damping (c and η are zero, so the peaks in the figure should be
infinitely high). Besides the reference solution, transmissibilities are depicted
for the case in which the mount has a certain amount of viscous damping c,
structural damping η or a lower value of the stiffness k in comparison to the
reference solution. In Figure 2.2(b) it can be seen that a reduction of the
mount stiffness results in a lower transmissibility and thus a better isolation.
The so-called roll-off, which is characterized by the decrease in transmissibility
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with increasing frequency, starts at a lower frequency. However, at the eigen-
frequencies the transmissibility is still infinitely high because of the absence
of damping. When the mount contains some viscous or structural damping,
the transmissibility is reduced at the eigenfrequencies. However, for viscous
damping the roll-off decreases as well, thus being unfavorable for the trans-
missibility at high frequencies. The structural damping mechanism maintains
the undamped roll-off and reduces the height of the peak responses at the
resonance frequencies.
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Figure 2.2: A two-DOF passive isolation system.

roll-off

U

2.3.2 Active isolation

Passive isolation is only effective in the high frequency region because of the
lower limit on the mount stiffness due to the static design requirements. To
achieve a better performance of the isolation system in the low-frequency re-
gion, the concept of active isolation can be used. The components involved
with active isolation are actuators, sensors and a controller. In Figure 2.3(a)
the same isolation system is depicted as considered in the previous subsection,
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Figure 2.3: A two-DOFs (a) and a three-DOFs (b) hybrid isolation system, the actuators
are assigned with the symbol A©.

but now extended with an actuator. This actuator is represented by an ex-
ternal force fa acting on mass m1 and the equations of motion now become:

fa + k (w − x1) + c (ẇ − ẋ1) − k1 (x1 − x2) = m1ẍ1, (2.3a)

k1 (x1 − x2) − k2x2 = m2ẍ2. (2.3b)

For this system with two degrees of freedom, the optimal actuator force fopt
a

can be determined in such a way that the displacement of mass m2 is reduced
to zero. With equations (2.3) the optimal actuator force for the harmonic case
can be determined as:

fopt
a = − (k + jωc)w. (2.4)

Besides a total reduction of the displacement of mass m2, also the displace-
ment of mass m1 is totally canceled. This means a perfect isolation for the
whole receiver structure resulting in a zero transmissibility, independent of
the dynamics of the receiver structure. However, the considered example is a
specific ideal case and is not representative for isolation systems in practice.
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2.3.3 Limitations

Passive isolation

It was shown that passive isolation is a good concept for isolation of machin-
ery at high frequencies. The discrete model showed that the roll-off is very
important for a good isolation in the high-frequency region. It was also shown
that a decrease of the mounting stiffness resulted in an overall decrease of the
transmissibility. However, the passive mounting system must satisfy contra-
dictory requirements. On the one hand it has to be sufficiently stiff to meet
the static displacement requirements. On the other hand the stiffness of the
mounting system has to be as small as possible to improve the isolation effect
due to the impedance or stiffness mismatch, especially for lightweight struc-
tures. These demands may result in relatively stiff support mounting systems
which are not effective in terms of structure-borne sound isolation. Also, the
resilient mounting system must contain some damping to attenuate the re-
sponse at the first rigid body eigenfrequencies of the source on the mounts.
The transmissibility of mountings in practice will deviate considerably from
the idealized two-degree-of-freedom model because of the resonances in the
receiver structure and in the mount itself.

Active isolation

Active isolation is a good concept to improve the reduction of the transmis-
sibility in the low frequency region. However, the example considered in the
previous subsection was a special case of an active isolation system with only
one transmission path. In actual multi-point mounting systems, a lot of struc-
tural transmission paths are present and it is difficult to place actuators in all
the transmission paths.

To illustrate the effect of an extra transmission path without an actuator,
consider the system depicted in Figure 2.3(b) with two transmission paths from
the source to the receiver structure. In the considered system only on mass m1

acts an actuator. The equations of motion for this three-degrees-of-freedom
system are:

fa + k1 (w − x1) + c1 (ẇ − ẋ1) − k3 (x1 − x3) = m1ẍ1, (2.5a)

k2 (w − x2) + c2 (ẇ − ẋ2) − k4 (x2 − x3) = m2ẍ2, (2.5b)

k3 (x1 − x3) + k4 (x2 − x3) − k5x3 = m3ẍ3. (2.5c)

When it is assumed that the source displacement is harmonic (w(t) = wejωt)
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these equations can be rewritten as:

− ω2M · x + jωC · x + K · x = wsw + tafa, (2.6)

where M is the mass matrix, C is the damping matrix, K is the stiffness
matrix, ws is a vector to apply the prescribed displacements at the masses
and ta is a vector to select the masses on which the actuator forces act. The
matrices can be written as:

M =



m1 0 0
0 m2 0
0 0 m3


 C =



c1 0 0
0 c2 0
0 0 0


 ,

K =



k1 + k3 0 −k3

0 k2 + k4 −k4

−k3 −k4 k3 + k4 + k5


 ,

ws =





k1 + jωc1
k2 + jωc2

0



 ta =





1
0
0



 .

(2.7)

The response of mass m3 is considered as a measure for the receiver response.
The actuator force can be determined in such a way that the displacement of
mass m3 is reduced to zero, but the displacements of the other two masses are
not zero. This means that total isolation is not achieved. It is also possible
to minimize the response of more than one mass. For this reason it is useful
to write the dynamics of the model (see equations (2.5)) in terms of transfer
functions:

x = hpw + hsfa, (2.8)

where x is a vector denoting the displacements of the three masses, hp is a
vector containing the transfers from the disturbance w to the displacements of
the three masses (the so-called primary transfer or primary path) and hs is a
vector containing the transfers from the actuator force fa to the displacements
of the three masses (the so-called secondary transfer or secondary path). The
transfers can be determined with equations (2.6) and (2.7) according to:

hp =
(
−ω2M + jωC + K

)−1 · ws, (2.9)

hs =
(
−ω2M + jωC + K

)−1 · ta. (2.10)

Now it is possible to define a vector with the displacements of the masses that
are candidates for minimization, the so-called sensor set response xs. The
response at the sensors in terms of harmonic transfer functions is:

xs = hpsw + hssfa, (2.11)
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where hps is the transfer from the disturbance displacement to the sensor
displacements and hss is the transfer from the actuator force to the sensor
displacements. It is now convenient to write the response as a Hermitian
quadratic error criterion, see section 2.6.1 for more details. The quadratic
cost function is written as:

J = xH
s · xs, (2.12)

where J is the quadratic error sensor response or cost function in terms of
the unknown actuator force. Note that xH

s denotes the complex conjugate
transpose of xs. The optimum actuator force that minimizes the cost function
J is consequently calculated by:

fopt
a = −

(
hH

ss · hss

)−1 ·
(
hH

ss · hpsw
)
. (2.13)

The total response of the three-degrees-of-freedom model can be calculated
with the optimal actuator force using equation (2.8). When the actuator force
is determined in such a way that the displacement of mass m1 is minimized,
no perfect isolation occurs. The displacement of mass m1 is perfectly reduced
but the displacements of the other masses are not reduced. This is shown in
Figure 2.4 where the transmissibility of mass m3 is plotted. It is seen that
the mass m3 still vibrates with practically no reduction. Also, when both
the displacements of masses m1 and m2 are minimized, no total isolation
of the receiver structure occurs. In total two structural transmission paths
transmit energy from the source to the receiver structure, which cannot be
totally isolated with just one actuator. Total isolation is only obtained when
an extra actuator is placed in the transmission path with mass m2.

2.4 Dynamics of complex structures

The discrete models that have been described in the previous section are
not suited for the applications of hybrid isolation that are considered in this
work. For that reason a general model is introduced to determine the dy-
namic structural behavior of a hybrid isolation system with a multi-point and
multi-directional mounting system. After this presentation, a reduced model
is described consisting of a receiver structure and (a part of) the mounting
system only. The latter model is suited for analysis of the influence of different
actuator and sensor configurations on the behavior of the receiver structure.
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Figure 2.4: Transmissibility of mass m3 for the three-dimensional simple hybrid isolation
system.

2.4.1 Frequency Response Functions (FRF)

Generally speaking, the relation between the harmonic forces and velocities
at point locations of the structure are described by steady-state Frequency
Response Functions (FRFs). The FRFs describe the response at different
locations of the structure due to sinusoidal (or harmonic) excitation forces.
There are several ways to describe these functions, for example with the me-
chanical impedance [93]:

Z =
f

v
, (2.14)

where Z is the impedance defined as the ratio of the force f divided by the
velocity v. In practice the impedance is rarely measured directly. Instead, the
mobility Y is often measured, being the velocity divided by the force [33, 93]:

Y =
v

f
. (2.15)

Strictly speaking, also the mobility is rarely measured directly since it is com-
mon to use acceleration sensors for measurements, implying that the accel-
erance is measured. Mobility or admittance measurements are performed by
exciting the structure with a known force resulting in a vibrating structure.
Sensors (in most cases acceleration pickups or accelerometers) are attached
to the structure to measure the response at different locations. During the
measurement, the transfer between the accelerations at the sensor locations
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and the force input is determined by means of an averaging procedure. When
the measurements are performed for several excitations at different locations
and/or at different DOFs, a transfer matrix can be composed. This frequency
dependent matrix relates in fact the responses at different locations with the
excitations at different (other) locations. For harmonic excitations, the compli-
ance2 can be determined by dividing the mobility by a factor jω respectively,
when a complex notation is used. In the same way, the dynamic stiffness,
which is defined as the ratio between the force divided by the displacement,
can be determined by multiplying the impedance with a factor jω. An overview
of the different FRF matrices are shown in Table 2.2.

The different types of FRFs, like the impedance and the mobility descrip-
tion, are also used for the models considered in this thesis.

Response Force

receptance or compliance H: x = H · f dynamic stiffness K: f = K · x
mobility or admittance Y: v = Y · f impedance Z: f = Z · v
accelerance jωY: a = jωY · f effective mass M: f = M · a

Table 2.2: Different types of FRF matrices that relate the displacement vector x, velocity
vector v and acceleration vector a to the excitation force vector f [93].

2.4.2 General multi-port model description

The dynamic port description for the dynamics of the whole hybrid isolation
system has been adopted from Gardonio et al. [40, 41]. The source and receiver
are connected by n mounts at the junctions as shown in Figure 2.5. The
force vector f and velocity vector v at each junction consist of the following
components for each frequency:

v =





u̇
v̇
ẇ

θ̇x

θ̇y

θ̇z





f =





fx

fy

fz

mx

my

mz





, (2.16)

2The compliance is also known as the dynamic flexibility or receptance and defined as
the ratio of the displacement divided by the force.
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Figure 2.5: General model of a hybrid isolation system.

where u, v, w are the complex displacements in x, y and z direction respec-
tively, θx, θy, θz are the angular displacements around the x−, y− and z−
axes, fx, fy and fz are the complex forces in x, y and z direction respectively
and mx, my and mz are the complex moments around the x−, y− and z−
axes. The dot symbol ˙( ) indicates the time derivative.

The velocity vectors and force vectors for all the connection points of the
mounts can be combined in single vectors for each subsystem. This yields for
the velocities and the forces at the source component:

vs =





v1
s

v2
s
...

vn
s





fs =





f1
s

f2
s
...
fn
s




, (2.17)

for the mounts:

vm =

{
vms

vmr

}
=





v1
ms

v2
ms
...

vn
ms

v1
mr

v2
mr
...

vn
mr





fm =

{
fms

fmr

}
=





f1
ms

f2
ms
...

fn
ms

f1
mr

f2
mr
...

fn
mr





, (2.18)
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and for the receiver structure:

vr =





v1
r

v2
r
...

vn
r





fr =





f1
r

f2
r
...
fn
r




. (2.19)

The vibration transmission of the isolation system is determined by the force
and velocity vectors at the junctions of the different subsystems. The dynamics
of each of the three subsystems are modeled using an impedance or mobility
matrix approach [93]. The source and receiver are described by a mobility
approach, so the relation between the velocities and the forces can be written
in the form:

vs = Yss · fs + Ysd · fd, (2.20)

where fd is the disturbance force vector acting on the source and Yss and Ysd

are the mobility matrices of the source. The dynamics of the receiver structure
are described in the same way according to:

vr = Yr · fr. (2.21)

The dynamics of the mounts are modeled using an impedance matrix approach:

{
fms

fmr

}
=

[
Zss Zsr

Zrs Zrr

]
·
{
vms

vmr

}
+

[
Tas

Tar

]
· fa, (2.22)

where Zss and Zrr are the driving point impedance matrices of the mounting
system at the source and receiver side respectively, Zsr and Zrs are the transfer
impedance matrices of the mounting system. Tas and Tar are the actuator
transformation matrices of the mounting system at the source side and receiver
side respectively, which indicate the DOFs that are actuated at the bottom
and top of the mounts and fa is the vector with actuator forces. The coordinate
systems chosen to derive the mobility or impedance matrices may differ from
the global coordinate system of the whole hybrid isolation system. This is
taken into account using a transformation matrix for each component:

fg
s = Ts · fs vg

s = Ts · vs, (2.23a)

fg
ms = Tm · fms vg

ms = Tm · vms, (2.23b)

fg
mr = Tm · fmr vg

mr = Tm · vmr, (2.23c)

fg
r = Tr · fr vg

r = Tr · vr, (2.23d)
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where superscript (.)g indicates the forces and velocities with respect to the
global coordinate system and Ts, Tm and Tr are the transformation matri-
ces from the local coordinate system of respectively the source, mounts and
receiver to the global coordinate system. The components are coupled with
each other by demanding continuity for the velocity vectors and equilibrium
for the force vectors at the junctions:

fg
ms = −fg

s vg
ms = vg

s , (2.24a)

fg
mr = −fg

r vg
mr = vg

r . (2.24b)

Using equations (2.20) till (2.24), a total system of equations can be composed
to solve the velocities and forces at all junctions for each frequency according
to:



I 0 −Ts · Yss · T−1
s 0

0 I 0 −Tr · Yr · T−1
r

Tm · Zss · T−1
m Tm · Zsr · T−1

m I 0
Tm · Zrs · T−1

m Tm · Zrr · T−1
m 0 I


 ·





vg
s

vg
r

fg
s

fg
r





=




Ts · Ysd

0
0
0


 · fd +




0
0

−Tm · Tas

−Tm · Tar


 · fa. (2.25)

Solving this equation by inversion of the left-hand side matrix results in:




vg
s

vg
r

fg
s

fg
r





= Hfv
p · fd + Hfv

s · fa, (2.26)

where Hfv
p is the primary transfer matrix which represents the frequency re-

sponse functions of the disturbance force to the velocities and forces at the
junctions of the source and receiver structure and Hfv

s is the secondary trans-
fer matrix which represents the frequency response functions of the actuator
forces to the velocities and forces at the junctions. From this point the super-
script (.)g will be omitted and the velocity and force vectors are considered in
the global coordinate system only. The results of equation (2.26) can be split
into:

fr = Hfr
p · fd + Hfr

s · fa, (2.27a)

fs = Hfs
p · fd + Hfs

s · fa, (2.27b)

vr = Hvr
p · fd + Hvr

s · fa, (2.27c)

vs = Hvs
p · fd + Hvs

s · fa. (2.27d)
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This model description is used in chapter 3 to analyze a simple analytical
model of a complete hybrid isolation system.

2.4.3 Reduced model: receiver structure

A disadvantage of the hybrid isolation model considered in the previous sub-
section is that a representative model of the source has to be defined. In the
literature on this subject, the source is often modeled as a rigid mass (see
also Table 2.1). This is certainly not a realistic model for the behavior of for
example a ship engine or gearbox. The behavior of that type of source is quite
complex, especially in the higher frequency region, due to the behavior of the
internal mechanisms and structural resonances. The focus in this work is on
the behavior of the receiver structure. The hybrid mounting system must re-
duce the vibrational or acoustic response of the receiver structure. Different
actuator and sensor strategies are investigated for a complex receiver structure
and for this purpose the source component in combination with the mounting
system can be omitted and a reduced model can be used.

The source is normally mounted on a passive isolation system to reduce
the interior noise and vibration levels in the high frequency region. This pas-
sive mounting support consists in most cases of relatively soft rubber mounts
on a raft or stiff support. The passive isolation mechanism is based on the
created impedance mismatch between the source and receiver structure. For
this reason, the source in combination with the mounting system behaves as a
‘force source’ on the relatively stiff raft and receiver combination [135]. This
means that the excitation can be described by a force vector acting on the
relatively stiff receiver structure and the source and the mounting system is
omitted in the further analysis. This is schematically shown in Figure 2.6,
where only the receiver structure is shown with a stiff foundation as the part
of this receiver structure. The disturbance force vector fd is assumed to act
on top of the foundation of the receiver structure. The remaining components
are similar to the previously described model. The dynamics of the foundation
part are again described by the impedance matrix formulation, in a similar
way as described by equation (2.22):

{
fd
fmr

}
=

[
Zss Zsr

Zrs Zrr

]
·
{
vms

vmr

}
+

[
Tas

Tar

]
· fa. (2.28)

The dynamics of the receiver structure at the junction locations are also de-
termined by a local mobility matrix approach:

vr = Yr · fr. (2.29)
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Figure 2.6: Model of a hybrid isolation system consisting of the stiff part of the mounting
system and a (complex) receiver structure.

Further, the transformation matrices of the set of equations (2.23) are used to
relate the forces and velocities described in the local coordinate system to the
global coordinate system. However, the coordinate system used to describe
the dynamics of the receiver structure is considered as the global coordinate
system. This means that Tr is equal to the identity matrix and that only a
transformation matrix Tm is needed to transform the variables related with the
foundation from its local coordinate system to the global coordinate system.
The latter transformation matrix Tm is now denoted by T. With the use of the
continuity and equilibrium conditions shown in equations (2.24a) and (2.24b)
the forces and velocities at the junctions can now be calculated according to:

vms =
(
Z−1

ss + Z−1
ss · Zsr · T−1 · Yr · T · H1

)
· fd

+
(
Z−1

ss · Zsr · T−1 · Yr · T · H2

)
· fa, (2.30a)

vmr = −T−1 · Yr · T · H1 · fd − T−1 · Yr · T · H2 · fa, (2.30b)

vr = −Yr · T · H1 · fd − Yr · T · H2 · fa, (2.30c)

fmr = H1 · fd + H2 · fa, (2.30d)

fr = −T · H1 · fd − T · H2 · fa, (2.30e)
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where:

H1 =
[
I −

(
Zrs · Z−1

ss · Zsr − Zrr

)
· T−1 · Yr · T

]−1 · Zrs · Z−1
ss , (2.31a)

H2 =
[
I −

(
Zrs · Z−1

ss · Zsr − Zrr

)
· T−1 · Yr · T

]−1 · Ta. (2.31b)

These equations can be rewritten in similar terms as for the model description
in the previous chapter:

fr = Hfr
p · fd + Hfr

s · fa, (2.32a)

vr = Hvr
p · fd + Hvr

s · fa. (2.32b)

The dynamics at the junctions of the isolation system are now described as
function of the disturbance forces and actuator forces.

This model is used in chapter 4 to analyze an isolation system with a
complex dynamic behavior. The Finite Element Method is used to determine
the mobility matrix Yr as shown in equation (2.29).

2.5 Acoustic models

The structural vibrations of the receiver structure are in many cases not the
real problem. The vibrations are transmitted to the acoustic medium sur-
rounding the receiver structure in the form of pressure perturbations which
are finally experienced as noise. For the considered applications of hybrid iso-
lation, the acoustic noise is finally required to be reduced in a hybrid way. For
this reason, models are introduced to determine the acoustic response with
the structural response of the receiver structure. These models will be used to
investigate acoustic error sensor criteria for hybrid isolation. In this section
two types of simplified acoustic models are considered: sound radiation into
the free field and sound radiation into an enclosure as a simplified represen-
tation of an accommodation. The interaction between the structure and the
surrounding environment is assumed to be small. For this reason the influence
of the medium on the structure can be neglected and a one-way coupling of
the structure with the surrounding medium is justified.

The acoustic wave propagation through a homogeneous fluid such as air is
described by the wave equation [34, 35, 89]:

∇2p(~r) − 1

c20

∂2p(~r)

∂t2
= −∂

2m

∂t2
, (2.33)

where p is the acoustic pressure at location ~r (the pressure perturbation upon
the steady state pressure e.g. the atmospheric pressure) and c0 is the velocity
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of sound in the medium. The ~(.) symbol indicates a geometric vector. The
term on the right-hand side can be considered as a source term: m is the mass
per unit volume. The term ∂2m

∂t2
can be written as ρ0

∂q
∂t where q is the volume

velocity per unit volume and the total term is known as the ‘monopole source
strength’. In the case of a harmonic time dependence, this equation reduces
to the inhomogeneous Helmholtz differential equation:

∇2p(~r) + k2p(~r) = −jρ0ωq(~r0), (2.34)

where k = ω/c0 is the acoustic wave number, ρ0 is the density of the medium
and ~r0 is the location of the monopole source. When the Helmholtz differential
equation is solved for a pulsating point source radiating into free space (a so-
called monopole), the solution can be written as:

p(~r) = jρ0ωq(~r0)
e−jkR

4πR
, (2.35)

where R = |~r − ~r0| is the distance between the pressure at location ~r and
the source at location ~r0. Two terms are distinguished in the solution for the
pressure: the monopole source strength and the so-called free space Green’s
function, which is defined as:

g(~r|~r0) =
e−jkR

4πR
. (2.36)

The Green’s function is thus in fact the solution of the Helmholtz equation for
a unit harmonic point source at ~r0:

∇2g(~r|~r0) + k2g(~r|~r0) = −δ(~r − ~r0). (2.37)

With the help of the Helmholtz differential equation and the expression for
the free-space Green’s function, a formulation of the pressure as a consequence
of volume sources in the considered volume and as a consequence of a normal
velocity distribution vn(~r0) on the closed surface of a vibrating structure can
be derived [35, 89]:

p(~r) =

∫

V

jωρ0q(~r0) g(~r|~r0) dV

+

∫

S

[
jωρ0vn(~r0) g(~r|~r0) + p(~r0)

∂

∂n
g(~r|~r0)

]
dS, (2.38)
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where p(~r0) is the pressure distribution on the boundary surface. This equa-
tion is called the Kirchhoff-Helmholtz integral equation and forms the basis
for numerical evaluation of sound radiation of structures with the help of the
Boundary Element Method (BEM) [137]. The volume integrand represents the
contribution to the pressure due to the sources that are present in the con-
sidered volume of the acoustic medium. Two terms are distinguished in the
surface integrand: the first (monopole) term represents the pressure contribu-
tion due to the free field radiation caused by the normal velocity distribution.
The second (dipole) term represents the influence of the presence of the sound
radiating body in obstructing the free passage of sound.

2.5.1 Radiated sound power

The sound pressure is a quantity that depends on the location and distance
from the vibrating structure. Another more general measure to quantify the
radiated sound is the radiated sound power which is defined as:

W̄ =

∫

S
Īn(~r0) dS, (2.39)

where W̄ is the time averaged radiated sound power and Īn is the time averaged
sound intensity in the direction normal to the surface S which is calculated
by:

Īn(~r0) =
1

2
ℜ (p(~r0) v

∗
n(~r0)) , (2.40)

where p(~r0) is the pressure distribution at the boundary surface and ∗ denotes
the complex conjugate. The sound power radiated by the vibrating surface
can now be expressed as:

W̄ =
1

2
ℜ
∫

S
p(~r0) v

∗
n(~r0) dS, (2.41)

where ℜ(.) denotes the real part. The sound pressure is often specified in
decibels because this scale is a better representation of the sensitivity of the
human ear. For this reason the sound power level is often used, defined as:

Lw = 10 log

(
W̄

W̄ref

)
, (2.42)

where W̄ref is the reference quantity equal to 10−12 W.
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2.5.2 Sound radiation of a baffled flat plate

The Kirchhoff-Helmholtz integral can be simplified considerably when the vi-
brating structure is a flat plate situated in a baffle. The baffle is an infinite
rigid surface around the plate and prevents the sound field on one side of the
surface affecting the sound field on the other side of the plate.

x

y

z

~r0

~r

R

vn(~r0)

baffle

plate

Figure 2.7: Schematic picture with a geometric interpretation used for the evaluation of
the Rayleigh integral for free field sound radiation.

Considering the Kirchhoff-Helmholtz integral equation (2.38), only the first
term has to be taken into account because only radiation into free space is
considered. However, the vibrating sources are now considered to lie on a rigid
surface (the surface of the plate is reflective), so the surface Green’s function
equals twice the free space Green’s function. The resulting expression is known
as Rayleigh’s second integral and relates the pressure to the normal velocity
associated with an elementary radiator (monopole) at a point on the surface
~r0 with the pressure at location ~r in the free space as shown in Figure 2.7
according to:

p(~r) =

∫

S
jωρ0vn(~r0)

e−jkR

2πR
dS. (2.43)

This equation is numerically implemented by discretization of the considered
plate structure into nodes and elements, e.g. by making use of the boundary
part of the finite element discretization of (a part of) the structure. When
the considered structure is divided into N elements with a constant normal
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velocity per element, equation (2.43) can be rewritten as:

p(~r) = jωρ0

N∑

j=1

e−jkR

2πR
Sjvnj

, (2.44)

where Sj is the area of element j and vnj
is the normal velocity of element j.

For multiple field points, equation (2.44) is evaluated for each field point for
a unit velocity, and can be rewritten in matrix vector terms according to:

pf = Zf · vn, (2.45)

where pf is the vector with pressures evaluated at the field points and Zf

is the acoustic impedance matrix related with the free field radiation. The
radiated sound power is calculated by integration of the sound intensity over
the boundary surface of the vibrating object as shown in equation (2.41):

W̄ =
1

2
ℜ


jωρ0

N∑

m=1

vnm Sm

N∑

j=1

e−jkR

2πR
vnj

Sj


 . (2.46)

The matrix formulation of this equation is:

W̄ = vH
n · R · vn, (2.47)

where R is the radiation resistance matrix :

R =
ω2ρ0

4πc0




S1S1 S1S2
sin(kR12)

kR12
· · · S1SN

sin(kR1N )
kR1N

S2S1
sin(kR21)

kR21
S2S2

...
...

. . .
...

SNS1
sin(kRN1)

kRN1
· · · · · · SNSN



, (2.48)

where Rjk is the distance between the elements j and k. The radiation matrix
R is symmetric due to reciprocity and is positive-definite (vH

n ·R·vn > 0,∀vn 6=
0) because the radiated sound power is always larger than zero for a nonzero
normal velocity vector.

2.5.3 Sound radiation into an enclosure

Besides sound radiation into the free field, the sound radiation into an en-
closure is considered as a simplified model of the interior noise response in
an accommodation. A schematic picture with a geometrical interpretation to
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Figure 2.8: Schematic picture with a geometric interpretation for the sound radiation
into an enclosure.

determine the sound radiation of a vibrating wall into an enclosure is shown in
Figure 2.8. For this type of interior sound modeling, the acoustic response in
the enclosure can be determined by a modal expansion of the acoustic modes or
eigenfunctions of the enclosure with rigid walls. First a Green’s function is con-
sidered, which by definition satisfies the following inhomogeneous Helmholtz
equation:

∇2G(~r|~r0) + k2G(~r|~r0) = −δ(~r − ~r0), (2.49)

where G(~r|~r0) is a Green’s function for a unit harmonic point source in the en-
closure. For this reason a solution of the Green’s function is sought in the form
of an expansion of the rigid-wall eigenfunctions. These eigenfunctions, denoted
by ψn(~r), satisfy the homogeneous form of the Helmholtz equation (2.34) in
the volume V and also satisfy the rigid wall boundary conditions on the surface
S [108]:

(∇2 + k2
n)ψn(~r) = 0 in V, ∇ψn(~r) · ~n = 0 on S, n = 1, 2, ... (2.50)

where kn is the nth eigenvalue and equal to ωn/c0, ψn(~r) is the corresponding
eigenfunction and ~n the outward-pointing normal to the boundary surface S
of the enclosure. The Green’s function can now be written as a summation of
the rigid-wall eigenmodes according to:

G(~r|~r0) =
∑

n

qnψn(~r), (2.51)
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where qn is the contribution or participation of each acoustic mode. Substi-
tution of equation (2.51) into equation (2.49), multiplication with the eigen-
function ψm and integration over the volume V yields with making use of the
principle of orthogonality:

qn =
ψn(~r0)

Λn(k2
n − k2)

, (2.52)

where Λn =
∫
V ψ

2
n(~r) dV . The Green’s function can subsequently be written

as:

G(~r|~r0) =
∑

n

ψn(~r0)ψn(~r)

Λn(k2
n − k2)

. (2.53)

The Kirchhoff-Helmholtz equation (2.38) relates the sound pressure at location
~r to the monopole source strength at location ~r0. Substitution of the expression
for the Green’s function (2.53) into the Kirchoff-Helmholtz equation yields:

p(~r) = jωρ0

∫

V

q(~r0)G(~r|~r0) dV −
∫

S

G(~r|~r0)
∂

∂n
p(~r0) dS. (2.54)

It is possible to prescribe a finite impedance condition at the boundary of the
cavity:

∂p

∂n
= jk

p(~rs)

zn(~rs)
. (2.55)

The equation for the pressure response in a rigid-wall cavity with finite im-
pedance boundary condition is:

p(~r) = jωρ0

∫

V

q(~r0)G(~r|~r0) dV − jk

∫

S

G(~r|~r0)
p(~rs)

zn(~rs)
dS. (2.56)

For a room with rigid walls, the sound pressure waves are completely reflected
at the boundaries. For this reason, the influence of the wall-impedance in
equation (2.56) can be omitted. With an ad hoc viscous modal damping ηn

in the Green’s function of equation (2.53) to take account of the dissipation
of sound energy, the sound pressure is determined by:

p(~r) = jωρ0

∫

V

q(~r0)
∑

n

ψn(~r0)ψn(~r)

Λn(k2
n + jηnk − k2)

dV. (2.57)

When this equation is numerically implemented with the same discretization
procedure as for the free field radiation, i.e. by assuming a set of vibrating
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pistons to describe the wall vibrations represented by the normal velocity
vector vn, the following impedance relation is derived:

pe = Z · vn, (2.58)

where pe is a vector with pressures evaluated at different locations in the
enclosure and Z is the impedance matrix of the enclosure. The terms of the
impedance matrix are determined in the following way:

Zij = jωρ0Sj

∑

n

ψn(~rsj
)ψn(~ri)

Λn(k2
n + jηnk − k2)

, (2.59)

where Sj is the area of element j, ψn(~rsj
) is cavity mode n evaluated at the

position of piston j on the boundary of the cavity and ψn(~ri) is cavity mode n
evaluated at field point i in the enclosure.

Numerical determination of the acoustic modes

For rectangular or cylindrical shaped enclosures, the acoustic modes and eigen-
frequencies can be determined with the aid of analytical expressions [15]. How-
ever, for arbitrarily shaped enclosures the acoustic modes and eigenfrequencies
have to be determined in a numerical way. The most suited method for this
problem is the Finite Element Method. Another numerical method is the
Boundary Element Method (BEM), but this method is more suited for the
free field radiation problem. In this work the commercial finite element pack-
age Ansys was used to determine the acoustic modes.

Discretizing the homogenous form of equation (2.34) and applying Galer-
kin’s weighted residual finite element procedure leads to the following finite
element eigenvalue equation [82]:

(
−ω2

n Mf + Kf

)
·ψn = 0, (2.60)

where Mf is the equivalent fluid mass matrix, Kf is the equivalent fluid stiff-
ness matrix and ψn and ωn are the mode shape vector (evaluated at the nodal
points) and the natural angular eigenfrequency respectively. In Ansys only
linear fluid elements are available to perform an acoustic analysis: a cubic
eight-noded fluid element and a tetrahedral four-noded element. The mode
shape vectors returned by Ansys can be normalized to the mass matrix or
to unity. To determine the Green’s function for the sound radiation into an
enclosure as shown in equation (2.52), the modal volume Λn of each mode
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shape must be determined. When the mode shape vectors are normalized to
the equivalent fluid mass matrix, the following equation applies:

ψ̂T
m · Mf · ψ̂n = δmn, (2.61)

where ψ̂n is the nth mode shape vector normalized to the fluid mass matrix.
The mass matrix is defined as:

Mf =
1

c20

∫

V
n · nT dV, (2.62)

where n is the vector with linear shape functions for the acoustic element.
When the mode shape vectors are normalized to unity (ψn, meaning that the
largest element has a unit magnitude) then by definition:

ψT
n · Mf ·ψn =

Λn

c20
, (2.63)

where Λn is the modal volume of mode shape vector ψn. Following the ap-
proach as presented by Ewins [33], the two mode shape vectors can be ex-
pressed as function of each other according to:

ψ̂n =
c0√
Λn
ψn. (2.64)

Hence, given the fact that the maximum element of ψn has magnitude one,
the modal volume of the mode shape vector ψn becomes [19, 20]:

Λn =
c20(

max(ψ̂n)
)2 . (2.65)

Acoustic response of enclosures

A representative measure of the acoustic response in the cavity is defined by
the time averaged acoustic potential energy Ep [123]:

Ep =
1

4ρ0c20

∫

V
|p(~r)|2 dV. (2.66)

Making use of equations (2.51) and (2.52), the pressure response in the cavity
can be written in terms of the acoustic cavity modes and modal participations:

Ep =
1

4ρ0c20

∑

m

∑

n

q∗mn

∫

V
ψn(~r)∗ψn(~r) dV qmn, (2.67)
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where m represents the index of the vibrating piston situated at the vibrating
boundary of the enclosure, n is the index indicating the cavity mode number
and qmn the participation of mode n due to the source piston m. Making use
of the definition for the modal volume and the vector notation results in:

Ep =
1

4ρ0c20

∑

n

qH
n · qnΛn =

1

4ρc20
QH · Λ · Q, (2.68)

where qn is a vector with modal participations for all source pistons for mode
number n, Q is a matrix with participations of the acoustic modes for all
source pistons and modes and Λ is a diagonal matrix with the modal volumes
of each mode.

Another, more straightforward measure is the sum of the squared pressures
at the considered field points in the cavity:

Jp = pH · p. (2.69)

The pressure response in the cavity is often depicted as a sound pressure level
(SPL) in dB, which is defined for a harmonic pressure amplitude vector p as:

SPL =
1

N
10 log

(
pH

rms · prms

p2
ref

)
, (2.70)

where pref is the reference pressure level for air with the value of 20 · 10−6 Pa
and prms the root mean square value of the pressure amplitude vector p and
N the number of pressure responses in the vector prms. The root mean square
value of the pressure is defined as:

prms =
p√
2
. (2.71)

Example: sound radiation into a reverberant rectangular enclosure

The sound radiation into an enclosure is considered as a simplified model of the
interior noise in an enclosure. To analyze the acoustic response of such a model
in more detail, the derived equations are used to compute the acoustic response
in a rectangular reverberant enclosure with one vibrating wall. This example
has often been subject of study in the literature, see e.g. [71, 111, 123, 124].
The walls of the rectangular enclosure are assumed to reflect the acoustic waves
completely. The rectangular top plate is assumed to be simply supported at
its boundaries. In the case of a rectangular enclosure of dimensions lx× ly× lz,
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the eigenfunctions and eigenvalues are given by [15, 35]:

ψn(~r) = cos

(
nxπx

lx

)
cos

(
nyπy

ly

)
cos

(
nzπz

lz

)
, (2.72a)

kn =

(
πnx

lx

)2

+

(
πny

ly

)2

+

(
πnz

lz

)2

, nx, ny, nz = 0, 1, 2, ... (2.72b)

Besides a modal expansion with the analytical expressions (2.72), the pressure
response in the rectangular enclosure is also determined with a modal expan-
sion of numerically determined cavity modes (FEM) and with a fully coupled
harmonic finite element analysis. The main difference between the first two
analyses and the third analysis is the coupling between the structure and the
fluid domain. The modal expansion analyses assume only a one-way coupling.
This means that the structural vibration excites the fluid domain, but not vice
versa, i.e. the fluid response exerts no influence on the structural response.
The fully coupled harmonic analysis takes this effect into account and thus
determines a two-way coupled response. The structural dynamic response of
the simply supported plate is determined with the help of an analytical model
as will be explained in chapter 3 and appendix D. With the known dynamic
response, the pressure response in the cavity can consequently be determined.

More details of this example are shown in Table 2.3. The top plate is
excited by a unit force in the z-direction at location (x, y) = (0.3, 0.4). For
the modal expansion 1000 acoustic modes were taken into account. The total
sound pressure level in the cavity is depicted as a function of the frequency in
Figure 2.9 for the three methods. The pressure responses of the three models
correspond quite well in the lower frequency range. At frequencies above 350
Hz the deviations in the pressure response become more pronounced because of
the high modal density. A lot of system resonances occur and are distinguished
by the peaks in the pressure responses. The resonances are caused by both
resonances of the vibrating top plate (e.g. the (1,1)-mode3 at 42 Hz, the
(1,2)-mode at 93 Hz) and acoustic resonances in the cavity (e.g. (0,1,0)-mode
at 144 Hz and the (0,1,2)-mode at 207 Hz). In Figure 2.10 the structural
harmonic response of the top plate and the acoustic harmonic response are
depicted at 168, 270 and 462 Hz respectively. The first considered harmonic
response is at a frequency situated near the eigenfrequency of the (2, 2) mode
of the top plate, see Figure 2.10(a). This can clearly be seen from both the
structural and acoustic response. The second considered harmonic response is
near the (0,1,2) acoustic mode of the enclosure and is shown in Figure 2.10(b).

3The numbers indicate the number of half wavelengths in each direction. The (1,1) plate
mode is thus the mode with one half wavelength in the x-direction and y-direction.
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The third considered harmonic response is depicted in Figure 2.10(c) and this
frequency is situated near the (4,2) mode of the vibrating top plate and the
(1,3,0) acoustic mode of the cavity.

Component Parameter Value

Top plate Dimensions (lx × ly × h) 1.0 × 1.20 × 0.01 m

Mean density ρ 2700 kg/m3

Modulus of elasticity E 71 · 109 N/m2

Cavity Dimensions (lx × ly × lz) 1.0 × 1.20 × 1.5 m

Mean density of air ρ0 1.2 kg/m3

Velocity of sound in air c0 344 m/s

Table 2.3: Parameters of the rectangular enclosure with vibrating top plate.
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Figure 2.9: Total pressure response in a rectangular cavity with a vibrating simply sup-
ported top plate determined for with the uncoupled modal expansion.

2.5.4 Limitations of the acoustic models

The considered acoustic models have some limitations inherent to the modeling
approach used. Considering the free field radiation, the assumption of a baffled
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(a) 168 Hz (b) 270 Hz (c) 462 Hz

Figure 2.10: Pressure distribution in a rectangular enclosure due to a vibrating simply
supported top plate.
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radiation plate is not conform to the real boundary conditions present. The
baffle prevents interaction of the sound fields between the considered radiation
plate and the surrounding structure, which is also vibrating and radiating
sound. Especially at low frequencies, where the acoustic wave lengths are
relatively large, this interaction is considerable. Generally speaking, the use
of the Rayleigh integral overestimates the radiated sound power into the free
field, but the tendencies are predicted quite well [94].

The modal expansion technique used to predict the interior sound levels in
an enclosure is only suited for relatively low frequencies. At higher frequencies
the modal overlap is too high to model the acoustics with a deterministic
approach like the modal expansion theory. The asymptotic density of acoustic
modes in a rectangular enclosure is given by [35, 108]:

dN(ω)

dω
≈ ω2V

2π2c30
, (2.73)

where N(ω) is the estimated total number of modes below the radial frequency

ω and dN(ω)
dω is the average number of modes per unit angular frequency band-

width or the so-called modal density. The asymptotic modal density is pro-
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portional to the square of the frequency, meaning that at high frequencies the
modal overlap increases rapidly. This implies that the deterministic approach
fails at higher frequencies. For these high frequencies another approach can be
used like Statistical Energy Analysis (SEA), or the Rayleigh integral method
(see equation (2.48)) when the modal density of the structure is not too high.

Another limitation is the uncoupled approach, meaning that the medium
surrounding the vibrating structure has no influence on the vibration of the
structure itself. The fluid loading effects are assumed to be weak, which is
justified in most cases when the surrounding medium is air. When the enclosed
fluid has a relatively large density (e.g. water) or the structure is light and
unclamped, the fluid loading effects may be considerable and a coupled analysis
could be necessary, like with the modal coupling theory [19, 34]. Another
condition to justify an uncoupled analysis is that the enclosed volume not be
too small. For confined spaces and weak structures (thin plates) the influence
of even air on the vibration of the structure is considerable and this concept can
even be used for passive noise reduction [1]. When the uncoupled solution is
compared with the fully coupled harmonic analysis of the considered example
as shown in Figure 2.9, it can be concluded that the influence of the coupling
is very small. This can be expected, because the top plate is relatively heavy
and stiff and the acoustic cavity relatively large.

It should also be noted that the acoustic modes used for the determination
of the acoustic response are the modes of a rigid walled enclosure. This means
that the solution based on a modal expansion does not converge to the correct
boundary normal velocity and is zero at the boundaries. It does converge
correctly to the correct boundary pressure at the vibrating boundaries. This
mathematical condition associated with infinite sums is referred to as Gibb’s
phenomenon. However, the pressure prediction at the interior of the cavity is
accurate and the deviation in the acoustic potential energy due to the Gibb’s
phenomenon is negligible according to Jayachandran et al. [58].

2.6 Active isolation

In this section a procedure is outlined for the analysis of feedforward active
isolation systems. A feedforward control strategy is possible only if information
is available about the primary disturbance of the isolation system. When this
information is not available, a feedback strategy must be used. In this thesis
only feedforward control strategies are considered.

The first application of a feedforward control system was proposed by
Lueg [79]. A microphone and an electronically driven loudspeaker were used
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Figure 2.11: General feedforward active control system.

to cancel the sound propagation in a tube. In Figure 2.11 a similar system is
depicted for an elastic structure. The structure is excited by a primary source
(disturbance) resulting in structural waves that travel through the structure.
The input from the primary source is measured with the reference sensor,
which is fed to the electronic controller. The controller drives the secondary
source (actuator) in such a way that the output from the error sensor (ob-
jective) is minimized. Generally speaking, the controller is implemented on
a digital signal processor (DSP). The DSP causes a delay in the feedforward
controller. The feedforward control of random disturbances is only possible
when the delay in the path from the reference sensor to the error sensor is
smaller than the propagation time of the elastic waves from the disturbance
to the error sensor. This is the so-called causality constraint. The propagation
time of the waves through the structure is very small and it is not possible
to attenuate random disturbances when the error sensor is located close to
the disturbance. However, when the disturbance is periodic e.g. harmonic
disturbances, only the fundamental driving frequency of the disturbance has
to be known. The causality constraint is of no importance in this situation.

2.6.1 Optimal control

The optimal control theory is used for the analysis of feedforward active isola-
tion systems as shown in Figure 2.12. The primary excitation is a disturbance
force, which puts the source in vibration and consequently results in a vibra-
tion of the receiver structure that is measured by the error sensor (e.g. an
accelerometer). The error sensor produces an error signal that is sent to the
controller, which drives the secondary source in such a way that the error sig-
nal is minimized. The secondary force is an actuator that produces a force,
e.g. an electrodynamic actuator. It is assumed that the whole system (the
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Figure 2.12: A feedforward active isolation system (SISO).
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structure, disturbance and actuator forces) behaves linearly. Furthermore it is
assumed that the signals are harmonic, which means that the models can be
analyzed for each frequency independently. For these reasons the signals can
be superposed as shown by the block diagram in Figure 2.12 and consequently
the error signal e is:

e = Hpfd +Hsfa, (2.74)

where Hp is the so-called primary path which is a harmonic transfer function
from the disturbance force to the error sensor, Hs is the so-called secondary
path which is a harmonic transfer function from the actuator to the error
sensor, fd is the disturbance force and fa is the actuator force. In the ideal
case considered, the error signal can be reduced to zero with an actuator force
of:

fopt
a = −Hp

Hs
fd. (2.75)

The considered isolation system is a so-called single-input-single-output
(SISO) system, which means that only one actuator and one sensor are used for
the control system. In practice often multiple sensors and actuators are used,
the so-called multiple-input-multiple-output (MIMO) systems. For MIMO
systems, equation (2.74) can be written as:

e = Hp · fd + Hs · fa, (2.76)

where it is assumed that also multiple independent disturbance forces may be
present. For the case that as many sensors as actuators are used for the active
isolation, the optimal actuator force can be determined according to:

fopt
a = −H−1

s · Hp · fd, (2.77)
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resulting in an error signal equal to zero. Considering equations (2.75) and
(2.77) it must be realized that these expressions are only valid for Hs not equal
to zero or Hs not singular. In general the number of sensors is not equal to
the number of actuators. In most cases an overdetermined system is used,
meaning that the number of sensors is larger than the number of actuators
and in fact the inverse of Hs changes into a pseudo-inverse. For this case an
error criterion or cost function J can be defined consisting of the sum of the
squared error signals according to:

J = eH · e. (2.78)

Substitution of equation (2.76) results in the Hermitian quadratic form [92]:

J = fH
a · A · fa + fH

a · b + bH · fa + c, (2.79)

where the individual terms are defined as:

A = HH
s · Hs, (2.80a)

b = HH
s · Hp · fd, (2.80b)

c = fH
d · HH

p · Hp · fd. (2.80c)

The cost function is quadratic in terms of the actuator force vector fa, and
has a unique minimum provided that the matrix A is positive definite. With
this condition the optimal actuator force that minimizes cost function J can
be determined according to [92]:

fopt
a = −A−1 · b, (2.81)

with a corresponding minimum value of the cost function:

Jmin = c− bH · A · b. (2.82)

It is also possible to use less sensors than actuators, the so-called underde-
termined case. However, this yields an ill-conditioned matrix A and for this
reason problems occur in minimization of the cost function.

2.6.2 Error criteria at the junctions of the receiver structure

Because the structural dynamics of the system are described by a port de-
scription, it is possible to define error criteria that minimize the response at
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the junctions or the ports directly. Examples of these kinds of error criteria
are minimization of the velocity response or force response:

Jv = vH
r · vr, (2.83a)

Jf = fH
r · fr, (2.83b)

where vr and fr are the receiver velocities and receiver forces at the locations
of the junctions respectively. These cost functions can be rewritten in terms
of the disturbance forces and actuator forces by the equations (2.27) or (2.32)
according to:

Jv = fH
a · HvrH

s · Hvr
s · fa + fH

a · HvrH

s · Hvr
p · fd +

fH
d · HvrH

p · Hvr
s · fa + fH

d · HvrH

p · Hvr
p · fd, (2.84a)

Jf = fH
a · HfrH

s · Hfr
s · fa + fH

a · HfrH

s · Hfr
p · fd +

fH
d · HfrH

p · Hfr
s · fa + fH

d · HfrH

p · Hfr
p · fd. (2.84b)

The actuator force vector that minimizes these error criteria and thus min-
imizes the forces or the velocities at the junctions of the receiver structure,
can consequently be determined with the equations (2.79) and (2.81). The
corresponding response is determined by equation (2.82). Furthermore it is
possible to define all kinds of error criteria related to the considered forces
and velocities, e.g. minimization of the velocities in the axial direction only or
another (combination of) DOFs or minimization of a weighted combination of
the forces and velocities.

Transmitted power

Another interesting measure is the transmitted power into the receiver struc-
ture. As explained before, the source is in general connected with the receiver
structure by a multi-directional and multi-point mounting system. The trans-
mission of vibrational energy from the source to the receiver structure occurs
along several DOFs. For this reason often the transmitted power is used to de-
termine the isolation performance. The transmitted power is a measure of the
power that is dissipated in the receiver structure due to the several damping
mechanisms. The total vibrational energy contents of the receiver structure is
determined by the summation of the potential and kinetic energy. The total
energy is directly related to the difference between the power that is injected
and that is dissipated from the structure4. In other words, transmitted power

4A more detailed analysis of the relation between the transmitted power and the energy
levels is described in appendix A for a one-degree-of-freedom oscillator.
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is closely connected to the total energy content (the sum of the potential and
kinetic energy) of the receiver structure. For this reason it is an interesting
measure to define the response and isolation performance of the hybrid isola-
tion system. Besides being used as a measure for the response, it is also an
interesting error criterion for active isolation purposes. When the transmitted
power is minimized, the sum of the potential and kinetic energy of the receiver
structure is minimized as well and a global reduction of the dynamic receiver
response is obtained.

The power flow into the receiver structure can be determined by:

Pt =
1

2
ℜ
(
fH
r · vr

)
=

1

4

(
fH
r · vr + vH

r · fr
)
, (2.85)

where ℜ(.) denotes the real part. The transmitted power Pt can be written in
the Hermitian quadratic form using the set of equations (2.27) or (2.32):

Pt =
1

4
fH
a ·
(
HfrH

s · Hvr
s + HvrH

s · Hfr
s

)
· fa+

1

4
fH
a ·
(
HfrH

s · Hvr
p + HvrH

s · Hfr
p

)
· fd+

1

4
fH
d ·
(
HfrH

p · Hvr
s + HvrH

p · Hfr
s

)
· fa+

1

4
fH
d ·
(
HfrH

p · Hvr
p + HvrH

p · Hfr
p

)
· fd. (2.86)

The optimal actuator force that minimizes the transmitted power can conse-
quently be determined by the equations (2.79) and (2.81).

Besides minimization of the net structural power injected into the receiver
structure, the models also allow the determination of other power contribu-
tions. It is also possible to determine the structural power input by the source
or the power exerted by the actuators solely:

Pd =
1

2
ℜ
(
fH
d · vsd

)
, (2.87a)

Pa =
1

2
ℜ
(
fH
a · vma

)
, (2.87b)

where vsd is the vector with velocities at the location of the disturbance forces
and vma is the vector with velocities at the junctions of the mounts in the
DOF that are actuated. The expressions for the power input by the source
and actuators can also be used as an error criterion for active control because
it can be written in the Hermitian quadratic form in terms of the actuator
forces, after which the optimal actuator force can be determined.



54 General theory of hybrid isolation systems

2.6.3 Error criteria for far-field structural sensors

In the foregoing model presentations, the dynamics of the whole isolation sys-
tem are described at the junctions only. However, these models can easily be
extended to the responses at other locations of the receiver structure, even
at a (large) distance from the source, so-called far-field sensors. This is nec-
essary to determine the passive and active response at different locations of
the receiver structure or for the determination of the acoustic response of (a
part of) the receiver structure. Also, global responses such as the kinetic or
potential energy or normal velocity distributions of parts of the structure (a
first measure of the sound radiation and necessary for performing acoustic
analyses) can easily be calculated. This is very useful to judge different error
sensor strategies, not only at the response of the error sensors itself, but also
by the dynamic responses at other parts of the receiver.

To determine the response at other locations of the hybrid isolation system
than the junctions, extra information has to be known. Consider a sensor set of
velocities vsr attached to the receiver structure. The response at this sensor set
is determined by the forces acting on the receiver structure according to [6, 7]:

vsr = Ysr · fr, (2.88)

where Ysr is a mobility matrix consisting of the FRFs from the forces at the
receiver junctions to the velocity response at the considered sensor set. This
mobility matrix must thus be determined by extra measurements or with the
help of the numerical model. This equation can be rewritten by substitution
of fr in equation set (2.27) or (2.32):

vsr = Ysr ·
(
Hfr

p · fd + Hfr
s · fa

)

=
(
Hvsr

p · fd + Hvsr
s · fa

)
, (2.89)

where Hvsr
p = Ysr ·Hfr

p is the matrix with primary FRFs from the disturbance
forces to the velocity sensor response vsr at the receiver structure and Hvsr

s =
Ysr · Hfr

s is the matrix with secondary FRFs from the actuator forces to the
velocity sensor set vsr at the receiver structure. This sensor response can
again be written in the well-known standard Hermitian quadratic form:

J = vH
sr · vsr = fH

a · HvsrH

s · Hvsr
s · fa + fH

a · HvsrH

s · Hvsr
p · fd+

fH
d · HvsrH

p · Hvsr
s · fa + fH

d · HvsrH

p · Hvsr
p · fd. (2.90)

This quadratic cost function can again be minimized by a set of optimal ac-
tuator forces.
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Minimization of the potential or kinetic energy

Besides the direct minimization of a set of velocity responses, it is also possible
to define a more global measure as cost function or to judge the receiver
response when numerical models are used. A representative global measure
of the receiver response is the potential and kinetic energy of the receiver
structure, and for this reason an interesting measure to be considered with
the structural isolation models. The maximum kinetic energy is determined
by weighting the total velocity response with the mass matrix:

Ekin =
1

2
vH

tot · M · vtot, (2.91)

where vtot is the velocity response at all DOFs of the receiver model and M
is the mass matrix composed with the FEM package. In a similar way the
maximum potential energy is determined by:

Epot =
1

2
uH

tot · K · utot, (2.92)

where utot is the total displacement response of all DOFs of the receiver model
and K is the stiffness matrix that is composed with the FEM package. The
evaluation of these error criteria and the calculation of the optimal actuator
forces may cost large computational times for models with a large number of
DOFs. Fortunately, the calculation of these energies can be reduced consider-
ably by making use of the modal expansion theory. This is explained in more
detail in appendix B.

2.6.4 Acoustic error criteria

Once the structural response of the receiver structure is determined, the cou-
pling with the acoustic domain can be made. To investigate the performance
of the active control system on the acoustic response of interest, the relation
between the vibrational response of a part of the receiver structure to the
acoustic response has to be determined in the first place. For the situation
that the radiated sound power into the free field is of interest, only a boundary
mesh of a part of the receiver structure is needed. This means that the geo-
metrical information of the surface mesh for which the radiated sound power
is determined is sufficient to calculate the radiation resistance matrix as de-
scribed by equation (2.48). When the pressure response at some locations in
the free field radiation is used as error criterion, an impedance matrix has
to be determined as described by equation (2.44). Besides the surface mesh
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information, also the locations of the field points with the error sensors (mi-
crophones) must be defined. For the determination of the pressure response
of the vibrating surface in an enclosure, the acoustic modes have to be calcu-
lated. For arbitrarily shaped enclosures this can be done with a finite element
package. The acoustic modes are used for the modal expansion to determine
the impedance matrix as described by equation (2.59).

The part of the receiver structure that is coupled to the acoustic analysis is
in this study referred to as the radiation plate. The normal velocity response
of the radiation plate is consequently determined by:

vrp = Yrp · fr, (2.93)

where vrp is the normal velocity response of the radiation plate and Yrp is
the mobility matrix from the forces at the junctions of the receiver structure
to the normal velocity response on the radiation plate. This equation can be
rewritten in terms of a primary and secondary frequency response function in
a similar way as shown with equation (2.88):

vrp = Hvrp
p · fd + Hvrp

s · fa. (2.94)

First, the free field radiation of the radiation plate is considered:

W̄ = vH
rp · R · vrp, (2.95)

which can be expressed in terms of the primary and secondary frequency
response functions as:

W̄ = fH
a · HvrpH

s · R · Hvrp
s · fa + fH

a · HvrpH

s · R · Hvrp
p · fd +

fH
d · HvrpH

p · R · Hvrp
s · fa + fH

d · HvrpH

p · R · Hvrp
p · fd. (2.96)

In a similar way the pressure response in a cavity or free field can be written
as a quadratic error criterion in terms of the actuator forces according to:

J = pH
e · pe = fH

a · HvrpH

s · ZH · Z · Hvrp
s · fa +

fH
a · HvrpH

s · ZH · Z · Hvrp
p · fd + fH

d · HvrpH

p · ZH · Z · Hvrp
s · fa+

fH
d · HvrpH

p · ZH · Z · Hvrp
p · fd, (2.97)

where pe is a vector with pressure signals at the field points in the enclosure
or free space and Z is the impedance matrix from the velocity response of the
radiation plate to the pressure error sensors in the enclosure or free field. The
optimal actuator forces are again determined as shown in section 2.6.1.
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2.6.5 Actuator configuration

Apart from the error sensor strategies, also the actuator configuration is an
important issue for the success of active vibration control or noise reduction.
In other words, the number, locations and directions of the actuators are
important on the active performance of the hybrid isolation system.

The influence of the number of actuators on the active isolation perfor-
mance of a discrete isolation model has been considered in section 2.3.3. It
was concluded that for total isolation, meaning that the motion of all the
masses are suppressed by the actuators, the number of actuators must be
equal to the number of structural transmission paths from the source to the
receiver structure. In that case no vibrations are transmitted to the receiver
structure at all. For the applications of hybrid isolation systems that are con-
sidered here, the number of actuators must be as small as possible for reasons
of costs, implementation and the control effort that is needed to drive the actu-
ators. As explained before, hybrid isolation systems in vehicles in general have
a multi-point and multi-directional mounting system. This means that a lot
of actuators are needed for complete isolation of the source from the receiver
structure. This requires many actuators, which is difficult to implement in a
practical application and results in too high costs. For this reason, the goal of
the applications for hybrid isolation considered in this work is not to obtain
complete isolation. Instead, two goals are considered: reduction of the number
of actuators and reduction of the needed actuator forces or actuator effort to
obtain a good active reduction. The actuator effort must be feasible, i.e. the
forces exerted by the actuators must not be unrealistically large. Reduction
of the actuator effort can also be realized by a modification of the quadratic
Hermitian error sensor strategy as shown in equation (2.79). This is done by
adding an extra term with the needed actuator inputs [38]:

J = fH
a · A · fa + fH

a · b + bH · fa + c+ fH
a · Wa · fa, (2.98)

where Wa is a diagonal matrix which weights each actuator force component
of the total actuator force vector separately. When each actuator force is
weighted to the same extent, the matrix Wa can be replaced by:

Wa = µI, (2.99)

where I is the identity matrix and µ is a coefficient that determines the amount
of actuator weighting. The purpose of the actuator weighting term in the cost
function is to account for the effort being expended by the control system, so
that small reductions in the sensor output are not obtained at the expense of
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very high actuator effort levels. The actuator effort weighting term is thus in
fact a penalty term: when the value of the error sensor response only becomes
very small when applying high actuator forces, the value of the cost function
is still considerable. The cost function reaches a minimum of the weighted
combination of the error sensor response and the actuator effort. The amount
of weighting is determined by the factor µ, which is a factor that has to be
determined by trial and error. When µ is zero, the error criterion contains
no actuator effort weighting, and no limit is applied to the actuator forces
to obtain the minimal sensor response. When µ is very large, hardly any
reduction is obtained.

Besides the number, also the location and the direction of the actuators
are important because they determine the effectiveness of excitation at the
error sensors by the considered actuators. The higher this effectiveness, the
better the actuators are able to influence the structure at the location of the
error sensors and the better the reductions that can be obtained at the error
sensor set. The purpose is in fact to find these locations and directions. In the
applications that are considered in the following chapters this is analyzed in
more detail. An important consideration with respect to this point is that the
information known about the structure is quite limited. For practical appli-
cations often not more information is available than the measured FRFs from
different excitation or actuator positions to the sensor locations. However, this
information can be sufficient to gain some information about the effectiveness
of the direction and/or location of actuation.

SVD analysis for actuator configurations

A particularly useful tool for analyzing FRF matrices is the Singular Value
Decomposition (SVD) [45]. This analytical tool is used in different fields, like
the inversion of ill-conditioned matrices and in the field of structural acoustic
active control to relate structural sensors to the desired acoustic response
with reduction of information. In this work it will be used to analyze different
actuator configurations. The SVD decomposition of a mobility matrix Y is
defined as:

Y = U · S · VH =
∑

i

ui si v
H
i , (2.100)

where U is a matrix with in each column the so-called field shapes, S is the
diagonal matrix with singular values in decreasing order and V is a matrix
with in each column the so-called source shapes. The field shapes are in fact
response patterns of the sensors and the source shapes are force patterns that
effectively excite the structure. The effectiveness of the combination of a
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source and field shape is determined by its corresponding singular value. More
details concerning the SVD analysis can be found in appendix C. Each com-
bination of a field shape ui and a corresponding source shape vi contributes
independently in the mobility matrix and the efficiency of this contribution is
determined by the singular value si. The singular values in the matrix S de-
crease with increasing number. This means that the contributions of the field
shapes and corresponding source shapes also decay with increasing number.
This information about the effectiveness of the field shapes and source shapes
is important information that can be used to determine the most effective di-
rections of actuation and the number of actuators that are necessary to have
an effective active reduction at the error sensor set. The SVD tool is used for
the application of hybrid isolation that is considered in chapter 4.

2.7 Concluding remarks

A general model was presented to describe hybrid isolation systems with a
source (e.g. an engine), a resilient hybrid mounting system and a receiver
structure (e.g. a ship hull). A port description was used to describe the
structural dynamics adopted from an existing model presented by Gardonio
et al. [40, 41]. This model representation, described by the multi-directional
force and velocity vectors at each junction, allows modeling of complex re-
ceiver structures with a multi-directional and multi-point mounting system.
The forces and velocity vectors are related to each other by a mobility matrix
(source and receiver) or an impedance matrix (mounts). The mobility matri-
ces can be determined by measurements or by calculation with analytical or
numerical models.

The active isolation part is described by the definition of a set of external
forces, acting on the receiver structure at the connections of the mounts with
the receiver. The actuator forces are determined by minimization of a Her-
mitian quadratic error function. This is a so-called optimal control procedure
that represents a feedforward control strategy with an ‘ideal’ controller. The
optimal actuator force can be determined straightforwardly as function of the
different FRFs that describe the combined passive and active responses of the
receiver structure. Different kinds of error sensor strategies have been intro-
duced. First of all, error sensor criteria in terms of the forces and velocities at
the junctions of the receiver structure are defined, such as minimization of the
forces and velocities or the transmitted power. The advantage of numerical
models is that the different mobilities and FRFs can be determined rather
easily. For this reason all kinds of responses can be determined and all kinds
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of error sensor strategies can be analyzed. Error sensor criteria like the mini-
mization of the potential or kinetic energy, are very difficult or even impossible
to determine with the help of measurements, but can be determined rather
easily with the help of mathematical models.

Besides the description of the structural dynamic behavior of the whole
hybrid isolation system, models of the acoustic behavior of (a part of) the
receiver structure have been presented. Two types of acoustic models have
been treated: the radiation of a baffled flat plate as part of the receiver struc-
ture into the free field and the radiation of a part of the receiver structure in
an acoustic enclosure. The latter acoustic model is in fact a simplified model
of an accommodation. Different acoustic responses have been described and
modeled as error sensor strategy.

In the next two chapters two applications of hybrid isolation systems are
analyzed with the use of the general hybrid isolation model that has been
presented in this chapter. The impedance and mobility matrices are deter-
mined with the help of an analytical or a numerical analysis. This allows easy
investigation of different kinds of error sensor strategies and even the use of
receiver responses that are impossible to measure. In chapter 3 a relatively
simple model is analyzed. The mobility and impedance matrices are deter-
mined in an analytical way. In chapter 4, a more complex receiver structure
is analyzed. The reduced model is used because most attention is paid to the
dynamic and acoustic behavior of the receiver structure.



Chapter 3

Analytical study of a simple
hybrid isolation system

3.1 Introduction

The discrete analytical models considered in the previous chapter have se-
vere limitations in modeling realistic isolation systems in the considered ap-
plications. The mounting system has in practice several structural vibration
transmission paths from the source to the receiver structure; i.e. the mount-
ing system is a multi-directional and multi-point supporting structure of the
source. Also, the dynamic behavior of the separate subsystems is much more
complicated and cannot be accurately described with oscillator models. For
this reason, more complicated isolation models are considered consisting of
a multi-directional and multi-point mounting system. In this chapter a first
introduction is presented in the analytical modeling of such combined passive
and active isolation systems in an analytical way. The physical aspects of
hybrid isolation systems will be considered in more detail.

The described analytical model is similar to the model introduced by Gar-
donio et al. [40, 41]. The general theory of the port-description as described
in the previous chapter, is used to connect the subsystems with each other
and to determine the passive and active responses of the receiver structure.
The isolation system consists of a rigid source connected with four isolation
mounts on a simply supported plate as receiver structure, see Figure 3.1. The
dynamic behavior of the separate components is relatively simple, and for this
reason analytical models can be used to determine the dynamic behavior of
the subsystems and the entire isolation system. The dynamics of the separate
components are described in section 3.2. The passive behavior of the com-
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Figure 3.1: Schematic picture of the analytical hybrid isolation system.
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posed system is analyzed in section 3.3. Subsequently, the active isolation
performance for various control strategies is investigated in section 3.4. The
considered isolation system is an idealized structure with an idealized control
system model, but it is effective to describe the physical aspects of hybrid
isolation systems and some general tendencies can be derived. In section 3.5
conclusions and shortcomings of the presented analytical model are presented.

3.2 Description of the analytical model

The example problem as shown in Figure 3.1 consists of a rigid body source,
a mounting system with four mounts and a simply supported plate as receiver
structure. The properties of the different components of the studied example
problem are shown in Table 3.1.

3.2.1 Dynamics of the source

The dynamic behavior of the source is described with the mobility approach
of section 2.4.2. The source is modeled as a rigid body and the disturbance
or excitation of the isolation system as a force vector acting in the center of
gravity of the source. The theory to determine the mobility matrix of a rigid
source mass is described in appendix D.1.
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Component Parameter Value

Source Dimensions (Lx × Ly × Lz) 0.20 × 0.20 × 0.40 m

(rigid mass) Density ρ 2700 kg/m3

Mount Dimensions cross-section 0.06 × 0.06 m

(Timoshenko beam) Length L 0.1 m

Density ρ 1000 kg/m3

Modulus of elasticity E 2.5 × 107 N/m2

Poisson’s ratio ν 0.33

Shear number ks 0.833

Structural loss factor η 0.1

Receiver Dimensions (Lx × Ly) 1.2 × 1 m

(simply supp. plate) Thickness h 0.025 m

Density ρ 2700 kg/m3

Modulus of elasticity E 70 × 109 N/m2

Poisson’s ratio ν 0.33

Structural loss factor η 0.01

Table 3.1: Parameters for the analytical model of the hybrid isolation system.

3.2.2 Dynamics of the mounting system

The dynamic behavior of each mount is described with the impedance ap-
proach of section 2.4.2. The impedance matrices are derived with a method
known as the dynamic stiffness matrix (DSM) formulation or spectral element
method [75]. This method resembles the finite element method because the
structure is also divided into a number of elements and junctions (nodes).
The displacements and rotations at the nodes (nodal degrees of freedom) are
related to the forces and moments at the nodes (nodal loads) by means of
a dynamic stiffness matrix. The difference with the finite element method
lies in the shape functions that are used to describe the spatial dependence
of a variable. In the finite element method linear or higher order polynomial
shape functions are used, whereas in the DSM method the exact solution is
used. The advantage is that for the DSM method a minimum number of ele-
ments per wavelength is not required. A disadvantage is that an exact solution
must be available. Each mount is modeled with one spectral beam element
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and the mount is coupled with the dynamic models of the source and the re-
ceiver at the junctions. The mounts are relatively short in comparison to their
cross-sectional dimensions. For this reason, the shear effect has a consider-
able influence on the bending vibration and has been included in the analysis.
Also, the influence of the rotary inertia has been taken into account. This
influence can be considerable for higher frequencies. More details concerning
the modeling of the beams can be found in appendix D.2.

3.2.3 Dynamics of the receiver structure

The dynamic behavior of the receiver structure is described with a mobility
approach as shown in equation (2.21). However, no exact solution exists for
the equation of motion of a plate. For this reason an approximate method is
used: the modal superposition technique.

A general two-dimensional harmonic equation of motion (e.g. a plate) can
be written as [23]:

B(1 + jη)L [w(x, y)] − ρhω2w(x, y) = fz(x, y), (3.1)

where B is a stiffness parameter, η is a structural loss factor, L is a differen-
tial operator, ω is the circular frequency, h is the height in the z-direction,
w(x, y) is the displacement and fz(x, y) is the distributed force. The eigenfre-
quencies and mode shapes are calculated by solving the homogeneous form of
equation (3.1):

B(1 + jη)L [ϕn(x, y)] − ρhω2
nϕn(x, y) = 0, (3.2)

where ϕn(x, y) is the nth eigenmode that satisfies the boundary conditions.
The nth damped complex eigenfrequency ωn is defined as:

ωn = ωn

√
1 + jη, (3.3)

where ωn is the undamped eigenfrequency. The solution of the inhomogeneous
equation (3.1) can be written as a modal superposition of the eigenmodes
according to:

w(x, y) =

∞∑

n=1

Wnϕn(x, y), (3.4)

where Wn is the modal participation of the nth mode. Substitution of the
modal expansion in equation (3.1) yields with abstraction of equation (3.2):

∞∑

n=1

Wnρh(ω
2
n(1 + jη) − ω2)ϕn(x, y) = fz(x, y). (3.5)
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Multiplication with ϕm(x, y), integration over the surface area of the plate S
and using the orthogonality principle results in:

Wn(ω2
n(1 + jη) − ω2)

∫∫
ρhϕ2

n(x, y) dxdy =

∫∫
fz(x, y)ϕn(x, y) dxdy. (3.6)

The modal participations are then determined by:

Wn =
1

Λn(ω2
n(1 + jη) − ω2)

∫∫
fz(x, y)ϕn(x, y) dxdy, (3.7)

where Λn is the so-called modal mass of mode n:

Λn =

∫∫
ρhϕ2

n(x, y) dxdy, (3.8)

Furthermore, the term fg
z is introduced, the generalized force, which is defined

as:

fg
z =

∫∫
fz(x, y)ϕn(x, y) dxdy. (3.9)

The displacement is consequently determined by substitution of the modal
participations into equation (3.4):

w(x, y) =
∞∑

n=1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη) − ω2)

. (3.10)

Each structure has an infinite number of eigenmodes with corresponding eigen-
frequencies. For the calculation of the response, a good estimation can be
obtained by taking into account a reduced set of eigenmodes. In practice
the modes that have eigenfrequencies lower and somewhat higher than the
excitation frequency of the structure are taken into account for the modal
superposition.

However, in some cases the truncation of the modal expansion may result
in large errors. This is shown in appendix D.3.3. The error of the response
due to the modal truncation can be reduced with the concept of residual
flexibility [22]. This concept can be explained using the derived formulas for
the modal expansion. Assume that an accurate prediction of the dynamics of
the harmonically excited system is desired in the frequency range from 0 up
to ωe. The total modal expansion is written as:

w(x, y) =
m∑

n=1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη) − ω2)

+
∞∑

n=m+1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη) − ω2)

,

(3.11)
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where the second term on the right-hand side represents the error when m
modes are taken into account for the modal superposition. In general the
eigenfrequencies for the modes n > m are much higher than the maximum
frequency of the considered frequency band ωe. Therefore, the response is
estimated by:

w(x, y) ≈
m∑

n=1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη) − ω2)

+
∞∑

n=m+1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη))

.

(3.12)

The modal terms for n ≫ m therefore contribute statically to the response
and are the so-called residual modes. The static response w0(x, y) can also be
written as a modal expansion by substitution of ω = 0 in equation (3.11):

w0(x, y) =
m∑

n=1

ϕn(x, y) fg
z

Λnω2
n

+
∞∑

n=m+1

ϕn(x, y) fg
z

Λnω2
n

.

(3.13)

Notice that the structural damping plays no role in the case of static defor-
mation. Combination of equations (3.12) and (3.13) yields:

w(x, y) ≈
m∑

n=1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη) − ω2)

+
w0(x, y)

(1 + jη)
−

m∑

n=1

ϕn(x, y) fg
z

Λn(ω2
n(1 + jη))

.

(3.14)

The harmonic response is written as a modal superposition of m modes and a
residual term consisting of the static response due to the excitation fz(x, y).
The disadvantage of this method is that, besides a modal analysis, also an
extra static analysis is needed that depends on the excitation fz(x, y). Unfor-
tunately, the static response is not exactly known when the equation of motion
is analyzed in an analytical way. However, an accurate prediction of the static
deformation is obtained by evaluating equation (3.13) with a large number of
dynamic modes. The computational effort is in general not so high, because
this calculation is independent of the frequency and hence needs only to be
evaluated once.



3.3. Passive response 67

The influence of the residual modes is large for the so-called driving point
FRFs, like for example the driving point mobilities. The driving point FRFs
describe the transfer between the response and excitation at the same location
and with respect to the same degree of freedom. The local deformation is
relatively large for this type of FRF, which means that a large number of modes
must be taken into account for a correct prediction of the dynamic behavior.
The additional contribution of the residual mode results in a considerable
improvement in the accuracy of the response for a simply supported plate,
which is shown in appendix D.3.3.

In appendix D.3 the dynamic behavior of a simply supported receiver plate
is described. The dynamics of the plate consist of flexural or bending defor-
mation and in-plane motions, each described with an equation of motion in
the form of equation (3.1).

3.3 Passive response

In the first instance, the passive response of the isolation system is considered.
The influence of the damping and the stiffness of the mounting system is
studied. As stated in the previous chapter, the mounting system consists of
four mounts with five degrees of freedom each to transmit the structural power
from the source to the receiver structure. The torsional degree of freedom of
the receiver structure is not considered for the structural power transmission.
This is discussed in more detail in appendix D.3. The results of the simulations
presented in this chapter are for a set of unit excitation forces (in the x-
direction, y-direction and z-direction) and unit moments (around the x-axis
and y-axis) in the center of gravity of the source as shown in Figure 3.1.

3.3.1 Passive response: transmitted power

The vibrational energy generated by the source excitation flows through the
mounting system to the receiver structure. The mounting system absorbs en-
ergy due to damping and isolates the source due to the impedance or stiffness
mismatch. The influence of reduction of the mount stiffness and the increase of
the damping on the transmitted power are shown in Figure 3.2. Increasing the
structural damping of the mounts reduces the peaks in the transmitted power,
which is especially visible at the low-frequency rigid body modes. The rigid
body modes indicate the modes where the rigid mass moves on the mount-
ing support only, without large deformation of the receiver plate, see also
appendix D.4. The roll-off remains unchanged due to the structural damp-
ing mechanism. Reduction of the mounting stiffness reduces the transmitted
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Figure 3.2: Influence of the structural damping (a), and the stiffness (b) of the mounting
system on the transmitted power.

power, but also causes a shift of the frequencies of the rigid body modes to-
wards a lower frequency. It is also shown that the introduction of a larger
impedance mismatch between the source and the supporting plate, created by
a reduction of the stiffness of the mounting system, results in a decrease of
the transmitted power in the whole frequency range.

3.3.2 Passive response: receiver response

Besides the mobility matrices related to the junctions of the receiver struc-
ture, also mobility matrices at other points of the receiver structure can be
determined. When a grid of points on the receiver plate is considered, an
indication of the global response can be obtained. In Figure 3.3 the passive
harmonic response of the receiver structure is visualized at six frequencies near
eigenfrequencies of the isolation system, by calculating the responses at the
points indicated by the depicted grid on the plate. Figures 3.3(a) - 3.3(d)
display the harmonic deformation shapes which strongly resemble the (1,1),
(2,1), (1,2) and (2,2) bending modes of the plate. At higher frequencies also
in-plane modes of the plate occur, and the first and second in-plane modes can
be observed in the harmonic shapes depicted in Figure 3.3(e) and Figure 3.3(f)
respectively.
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(a) 123 Hz (b) 233 Hz (c) 289 Hz

(d) 407 Hz (e) 2678 Hz (f) 2908 Hz

x

y
z

Figure 3.3: Deformation shapes of the receiver plate for the passive situation, the colors
represent the displacement in the z-direction (a-d), y-direction (e) or x-direction (f). The
dots indicate the position of the mounts.

3.4 Active isolation

As stated in the previous section, the passive mounting system is in an ideal
situation designed to be as flexible as possible with some damping to attenuate
the response of the rigid body modes of the source on the mounting system. In
general there is a lower bound to the stiffness of the passive mounting system
because the static movement of the source must be restricted. Furthermore,
some care must be taken to avoid internal resonance frequencies of the mount-
ing system around the excitation frequency and multiple harmonics of this
frequency. To gain more reduction, active isolation techniques can be used.
In this section a procedure is outlined for the analysis of feedforward active
isolation systems.

The configuration of the model for the determination of the active isolation
performance is again that of Figure 3.1. The disturbance force is the same
as that used for the simulations of the passive system: a unit force in the
three translational directions and two unit moments acting at the center of
the rigid source. The hybrid mounting system consists of four hybrid mounts.
Each hybrid mount consists of a passive isolator (the same as that used in
section 3.3 with the properties shown in Table 3.1) in combination with one
actuator for each mount which only exerts a force in the out-of-plane direction
of the receiver plate (thus the axial z- direction of the mounts).
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3.4.1 Error criteria at the junctions of the receiver

The transmitted power is an overall measure for the vibration response of the
receiver structure and for this reason an interesting error criterion for active
control. However, many different cost functions can be defined to evaluate
the active response of the isolation system. For now, the responses at the
junctions of the receiver structure are considered for the error criteria. These
types of error criteria have also been analyzed by Gardonio et al. [40, 41],
but here the disturbance force excites five instead of three DOFs. In this
subsection results of the active minimization of the following error criteria are
shown: the transmitted power, the velocities at the junctions, the forces at
the junctions and a combination of the latter two. The effectiveness of these
control strategies is compared by considering the influence of these strategies
on the transmitted power to the receiver structure. The transmitted power
is thus considered as the performance response. The equations to determine
the optimal actuator forces for error criteria at the junctions of the receiver
structure were derived in section 2.6.2.

The best possible reduction of the transmitted power is by definition ob-
tained by minimization of the transmitted power itself, see Figure 3.4(a). The
actuators are able to reduce the transmitted power considerably over the entire
considered frequency region. It is remarkable that less reduction is obtained
in the frequency range from 2500 till 3000 Hz. This is caused by a relatively
large transmitted power contribution in the in-plane directions of the receiver
plate. The excitation frequency is close to two in-plane resonances of the re-
ceiver. The actuators cannot actuate in these directions and for this reason
the transmitted power is hardly reduced at these frequencies.

Besides the minimization of the transmitted power, it is also possible to
minimize just the forces (J = fH

r · fr) or the velocities (J = vH
r · vr) at the

junctions of the receiver structure (thus at the locations where the mounting
system is connected to the receiver structure). The results for these two error
criteria are shown in Figure 3.4(b). A good reduction can be achieved with
minimization of the forces or velocities at high frequencies. However, min-
imization of these cost functions results in less reduction of the transmitted
power in the frequency region from 100 till 1000 Hz compared to minimization
of the transmitted power itself. This effect is most pronounced for minimiza-
tion of the forces, because the resonance frequencies of the actively controlled
receiver structure remain unchanged. When the velocities are minimized also
less reduction in transmitted power is obtained, but this is not so clearly vis-
ible because the resonance frequencies of the actively controlled receiver are
shifted towards higher frequencies. The reason for this is that the minimiza-
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Figure 3.4: Active response of the analytical model of the hybrid isolation system for
minimization of the transmitted power (a) and for minimization of the velocities and
forces at the receiver junctions (b).

tion of velocities introduces an extra boundary condition at the connection
points of the mounts, i.e. the movement of the receiver plate is restricted lo-
cally by the actuator influence and a pinned condition is introduced when only
the velocities in the out-of-plane direction are considered in the cost function.
For frequencies higher than the first few resonance frequencies of the receiver
structure, the performance of minimization of velocities and forces is compa-
rable to minimization of the transmitted power.

The active responses shown in Figure 3.4 are determined with error criteria
that take into account the response in all the degrees of freedom at the connec-
tion points of the mounts with the receiver structure. These control strategies
are difficult to implement in practical applications. The measurement of the
moments is for example difficult. It has been shown that for this isolation
system the transmitted power is dominated by the transfer in the axial direc-
tion of the mounts (the out-of-plane direction of the plate). For this reason,
also error criteria are considered which minimize the transmitted power, ve-
locities and forces in the axial direction of the mounts only (indicated by P ax

t ,
vax

r and fax
r respectively). In Figure 3.5(a) the response is shown when the

transmitted power is minimized in the axial direction only. The considerable
increase in the transmitted power at low frequencies is remarkable. This is
caused by the so-called power circulation [41]. The axial transmitted power is
reduced in such a way that it even becomes negative. This means that power
absorption in the axial direction is achieved, by introducing a lot of power
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in especially the angular directions. In other words, power is injected in the
angular directions and is absorbed in the axial direction. The result is that
in the active situation a larger power transmission is obtained in comparison
with the passive situation.
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Figure 3.5: Active response of the analytical model of the hybrid isolation system with
minimization of the axial transmitted power (a) and with minimization of the axial forces
or velocities at the junctions on the receiver structure (b).

In Figure 3.5(b) the transmitted power is plotted for minimization of the axial
forces or axial velocities. The same tendencies are observed as for minimiza-
tion of all the force or velocity components at the connection points. The
reduction at the first eigenfrequencies of the receiver is not so large, and for
velocity minimization the eigenfrequencies of the actively controlled receiver
plate are shifted upwards in the frequency range. To improve the performance
of these cost functions it was suggested by Gardonio et al. [41] to implement

a weighted combination as cost function: J = vaxH

r vax
r + µfaxH

r fax
r . It can be

seen in Figure 3.6 that the minimization of this cost function results in a sim-
ilar reduction compared to the minimization of the total transmitted power.
Gardonio determined the factor µ by taking the square of the point mobility of
an infinite receiving plate with the same thickness. The simulations presented
here were performed for different values of µ, after which the best result was
chosen (which was a value of 3.3 · 10−8 s2/kg2). It can also be observed that
no increase of the vibration occurs for this cost function.
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Figure 3.6: Active response in terms of the transmitted power for minimization of a
weighted combination of the axial forces and velocities at the receiver junctions compared
to minimization of the transmitted power itself.

3.4.2 Actuator effort

The actuators are modeled as an external force acting on the receiver only.
It is also possible to design a mount with a reaction force against the source.
The first concept, is e.g. a shaker that is attached to the receiver structure
and supplies a force by reaction against its own mass. The second concept
is the same shaker, but placed between the source and the receiver structure.
These two actuator concepts are compared with each other in Figure 3.7(a) for
minimization of total transmitted power. No difference can be distinguished in
the performance for frequencies above the frequencies of the rigid body modes
of the isolation system, but at lower frequencies no reduction is achieved with
the actuator concept with reaction against the source. The performance of the
second concept has a better performance in the lower frequency range where
the rigid body modes occur. In Figure 3.7(b) the actuator effort is depicted
for the two actuator principles. Typical of concept 2 is a high actuator force at
frequencies below the eigenfrequencies of the rigid body modes [38]. Concept 1
has relatively high actuator forces at frequencies around the eigenfrequencies
of the rigid body modes. The control effort at high frequencies is the same for
both concepts.
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Figure 3.7: Active response with minimization of the transmitted power for the two
actuator concepts in combination with the passive isolators (a) and the corresponding
control effort (b).

3.4.3 Error criteria at the receiver

So far, error criteria have been considered that only take account of the re-
sponses at the connection points of the mounts with the receiver structure.
The performance of the hybrid isolation system has been determined in terms
of the transmitted power. However, with the used model description it is also
possible to examine other error criteria consisting of more sensors attached
to the receiver structure. In this subsection cost functions are analyzed that
represent a measure for the response of the simply supported receiver plate.
The performance of the hybrid isolation system is determined by the velocity
distribution of the entire receiver plate.

The cost function related with the response of the receiver plate can in
general be written as:

J = vH
rec · TH · W · T · vrec, (3.15)

where vrec is the velocity response vector at different points of the receiver
structure, T is a matrix to filter or combine velocity components with dif-
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ferent degrees of freedom and W is a matrix for weighting of the (filtered)
velocity response. The matrix T is for example a matrix that filters the re-
ceiver response in such a way that only the velocities in the normal direction
are considered. Examples of weighting matrices W are the mass matrix or the
acoustic radiation matrix to analyze the kinetic energy or acoustic radiated
power of (a part of) the receiver, respectively. More details about such error
criteria and the determination of the optimal actuator forces are given in sec-
tion 2.6.3. Important for the calculation of the response is the mobility matrix
Ysr, which is the mobility matrix from the forces on the receiver structure at
the junction points to receiver locations where the velocities are determined
(see also equation (2.88)).

An example of a more global error criterion at the receiver structure is
the total quadratic normal velocity response. Following the notation used in
equation (3.15), this cost function can be written as:

J = vH
rec · TnH · Tn · vrec = vnH

rec · vn
rec, (3.16)

where vrec is the total velocity vector at the points of the considered grid, Tn

is a matrix to filter the normal velocity vector out of the total velocity vector
and vn

rec = Tn ·vrec is the resulting normal velocity vector. The normal veloc-
ity vector is determined at the same grid of points as shown in Figure 3.3. This
cost function is interesting because the normal velocity gives a first indication
of the sound field radiated by the receiver plate. The receiver plate behaves
more stiffly in the in-plane direction than in the out-of-plane direction. This
can be observed by the fact that the eigenfrequencies of the in-plane modes
are much higher than the eigenfrequencies of the out-of-plane modes (see also
Figure 3.3). For this reason the out-of-plane motion is mostly pronounced.
The total kinetic energy of the receiver is dominated by the normal velocity
response of the receiver structure. In Figure 3.8(a) the total quadratic normal
velocity response is depicted when the transmitted power is minimized, and
in Figure 3.8(b) the total quadratic normal velocity response is shown when
only the axial velocity vector or axial force vector is minimized. Minimization
of the transmitted power yields similar results as minimization of the sum of
the potential and kinetic energy of the receiver structure (see appendix A). At
higher frequencies (above the eigenfrequencies of the modes where the rigid
source moves on the weak mounts without large deformation of the receiver
structure), the kinetic energy dominates and has a much larger value than the
potential energy. The normal velocity response has the largest contribution
to the total kinetic energy. This property in combination with the equal mass
distribution of the plate, explains the fact that minimization of the transmit-
ted power results in a good reduction of the normal velocity response at the
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Figure 3.8: Active response in terms of the normal velocity distribution at a grid of points
on the receiver plate for different error criteria.

considered grid points. Minimization of the axial velocities or forces at the
junction points of the receiver results in less reduction of the normal velocity
distribution compared to minimization of the transmitted power, especially in
the lower frequency region till 1000 Hz.

It was seen in Figure 3.6 that the cost function consisting of a weighted
combination of the axial junction velocities and forces at the receiver structure
resulted in a very good reduction of the transmitted power. The reduction is
almost as large as for the minimization of the transmitted power itself. For
this reason, the influence of minimization of the weighted combination of the
axial junction velocities and forces on the considered normal velocity response
is considered. The result is shown in Figure 3.9 for the same weighting of
the axial force as used in section 3.4.1 (µ is 3.3 · 10−8 s2/kg2). The reduction
for the weighted velocity and force combination is considerably less than for
minimization of the transmitted power. Although the considered cost function
reduces the transmitted power almost maximally (almost the same reduction
is obtained as by minimization of the transmitted power itself), the velocity
response of the receiver is much larger than when the transmitted power is
minimized. Apparently, a small deviation in the actively transmitted power
causes a relatively large deviation in the normal velocity response.

To give an impression of the influence of the actuators on the receiver
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Figure 3.9: Active response in terms of the normal velocity distribution at a grid of points
on the receiver plate for minimization of a weighted combination of the axial forces and
velocities at the junctions compared to minimization of the transmitted power.

response for the different error criteria, the harmonic responses of the actively
controlled receiver plate are shown in Figure 3.10. The harmonic deformation
shapes are shown for the frequency of 75 Hz, because the deviations in the
active response for the different error criteria are large for this frequency. The
source makes a combined rigid body rotation around the x-axis and y-axis in
the passive situation, as can be seen by the passive harmonic response of the
receiver plate in Figure 3.10(a). A good reduction of the displacement is shown
when the transmitted power is minimized. The velocities at the junctions of
the receiver structure are reduced considerably which can be seen clearly from
the deformed shape in Figure 3.10(b). A similar deformed shape is obtained by
minimization of the axial velocities at the mount junctions, see Figure 3.10(d).
Minimization of the axial forces yields a reduction of the velocity response,
but the deformation shape does not change very much in comparison to the
passive deformation as can be seen in Figure 3.10(e). When the transmitted
power in the axial direction is minimized, the receiver response has a higher
level because of the power circulation phenomenon (see Figure 3.10(c)). Most
reduction in terms of the normal velocity response is obtained by definition by
minimization of the normal velocities themselves. The deformed shape of the
active response of the receiver plate with minimization of this error criterion
is shown in Figure 3.10(f).
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Figure 3.10: Active deformation shapes of the receiver plate at 75 Hz. The gray-scale
represents the amplitude of the displacement in the z-direction.

3.4.4 Sound radiation and acoustic error criteria

Only structurally related error criteria have been considered so far. These
error criteria are referred to as active vibration control (AVC) strategies or in
this case active vibration isolation strategies. For this type of isolation, only
the structural response of the structure is considered. Another control strategy
is to change or reduce the vibration with the objective to minimize the sound
radiation of (a part of) the receiver structure, a so-called active structural
acoustic control (ASAC) approach. This ASAC approach is considered in this
subsection, by considering the performance of the isolation system in terms of
the radiated sound power.

In section 2.5.2 it was explained how the radiated sound power Lw of a
baffled plate can be determined. With the assumption that the receiver plate
is placed in a baffle, the acoustic radiation matrix R is given by equation (2.48)
and the radiated sound power can consequently be written as:

J = Lw = vnH

rec · R · vn
rec, (3.17)
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Figure 3.11: Active response in terms of the radiated sound power of the receiver plate
when the transmitted power is minimized (a) and when the axial velocities or forces at
the junctions are minimized.

where vnH

rec is the normal velocity vector of the receiver plate at the same grid of
points as considered in the previous subsection. This equation can be written
in the Hermitian quadratic form in terms of the actuator forces, after which
the optimal actuator force can be determined as explained in section 2.6.4.

The active response in terms of the radiated sound power is depicted for
minimization of the transmitted power and for minimization of the radiated
sound power itself in Figure 3.11(a). The reductions obtained by minimization
of the transmitted power are much less than the maximum reduction that is
obtained by minimization of the radiated sound power up to a frequency of
1000 Hz. At higher frequencies minimization of the transmitted power results
in similar reductions as minimization of the radiated sound power itself.

Also the influence of the error criteria that minimize the axial velocities
and forces at the junctions of the receiver structure on the radiated sound
power is depicted in Figure 3.11(b). The same tendencies in terms of the radi-
ated sound power can be observed as for the response in terms of the normal
velocity distribution. Minimization of the axial velocities has a better per-
formance for the frequency range up to 400 Hz. For higher frequencies, the
performance of both error sensor strategies are similar, but slightly less than
minimization of the transmitted power. The influence of the error criterion
consisting of a weighted combination of the axial velocities and forces on the
radiated sound power is depicted in Figure 3.12(a). For the considered weight-
ing factor (µ is 3.3 · 10−8 s2/kg2 as shown in section 3.4.1), this error criterion
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Figure 3.12: Active response in terms of the radiated sound power when the transmitted
power and a weighted combination of the axial forces and velocities are minimized (a)
and when the normal velocity distribution is minimized (b).

results in the same reductions as minimization of the axial forces only up to
a frequency of around 100 Hz. At higher frequencies the results are better
compared to minimization of the axial forces and velocities only, and equal
to the reductions obtained with minimization of the transmitted power. The
reduction of the radiated sound power for minimization of the (unweighted)
normal velocity distribution is shown in Figure 3.12(b). This is an example of
the fact that active vibration control approach (AVC) differs from the active
acoustic vibration isolation approach (ASAC). In the frequency range up to
400 Hz, the weighting with the radiation matrix results in considerable extra
reduction. However, for frequencies larger than 500 Hz, the followed approach
has no influence and both error sensor strategies result in similar reductions.

3.5 Concluding remarks

In this chapter an analytical model of a hybrid isolation system was presented
with a mobility and impedance matrix approach. The general model described
in chapter 2 was used as a basis for the presented analytical model. The an-
alytical model itself is based on an existing model presented by Gardonio et
al. [40, 41], but extended to a three-dimensional excitation of the source. The
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general model uses a port description to connect the isolation system compo-
nents with each other. Therefore also point mobilities of the receiver structure
have to be determined. When a modal superposition is used to describe the
dynamics of the receiver structure, it was seen that the contribution of the
modes with high eigenfrequencies that are omitted in the modal superposi-
tion, may be large on the considered mobility. The error due to this effect can
be reduced quite effectively by taking into account so-called residual modes.

In chapter 2 it was shown that it is preferable to design the mounting
system as flexible as possible. However, in practical applications other restric-
tions play a role that limit the flexibility of the mounting system. Using active
isolation is a good option, considering the results of the described analytical
model. A large reduction of the transmitted power over the whole frequency
range is obtained, even when only the forces or the velocities in the normal
direction at the junctions of the receiver plate are considered. Minimization of
the transmitted power with respect to one degree of freedom (for each mount)
is not preferable because of the power circulation phenomenon in the low fre-
quency range. Also control strategies have been analyzed that take account
of a more global measure of the whole receiver response. The considered con-
trol strategies that only take account of the response at the junctions of the
receiver structure have a good performance in terms of the global receiver re-
sponse at high frequencies. Besides active vibration isolation strategies also an
active structural acoustic isolation control strategy is analyzed by considering
the radiated sound power of the receiver plate.

The analytical model described in this chapter is a more realistic repre-
sentation of real-life isolation systems than the oscillator models described in
chapter 2. The mounting system is more realistic and has multi-point and
multi-directional vibration transmission paths to the receiver structure. Also
quite complex dynamic behavior with characteristic deformation patterns oc-
curs like in real-life isolation systems. However, the receiver structure is still a
very simple structure and has some typical properties. The structural power
transmission occurs especially in the normal direction of the mounts. When
other directions play an important role in the power transmission, for example
at frequencies where in-plane resonances of the plate occur, it was seen that
the actuators were not able to reduce the transmitted power. In realistic isola-
tion systems the vibration transmission is not so pronounced in one direction.
For this reason, a more complicated receiver structure will be analyzed in the
next chapter.
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Chapter 4

Numerical studies on a
laboratory setup of a hybrid
isolation system

4.1 Introduction

In the previous chapter an analytical model of a hybrid isolation system was
studied. This model is useful for understanding the underlying physics of
isolation systems, but is in general not suitable for the representation of ‘real-
life’ and complex hybrid isolation systems like resilient mounting systems for
heavy machinery in ships. In this chapter a more advanced modeling technique
is presented that can be used as a basis for the investigation and design of
more complex hybrid isolation systems. The general theory of chapter 2 is
again used to determine the passive and active responses of the whole system.
The receiver structure is quite complex and for this reason modeled with the
numerical Finite Element Method. One of the promising applications of hybrid
isolation systems is the isolation of heavy machinery in vehicles. To investigate
this kind of applications for applying hybrid isolation techniques in more detail,
TNO built a small-scale laboratory arrangement that, as a vibratory system,
has sufficient complexity to offer some difficulties representative for a hybrid
isolation system in a ship (see section 4.2). In this chapter a numerical model
of a laboratory setup is described. This numerical model is used to investigate
different actuator and sensor configurations for hybrid isolation.

As stated earlier, the goal of the numerical models is not to have an exact
representation of real-life systems. The numerical models are used as mod-
els with representative complexity for the considered applications for hybrid

83
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isolation. These models enable the development and testing of general ac-
tive isolation concepts. More details about the laboratory setup are given in
section 4.2.

The procedure to determine the dynamic response of the hybrid isolation
system consists of several steps. The first step is to determine the structural
behavior of the receiver structure due to the excitation mechanisms of the
source. In the next step, a similar procedure is followed to obtain the influence
of the actuators on the structural behavior of the receiver structure. The Finite
Element Method is used to describe the dynamics of the receiver structure
and this is explained in more detail in section 4.3. The numerical model of
the laboratory setup is described in section 4.4. In combination with the
model of the mounting system, the passive and active structural responses of
the whole isolation system can be determined as described in section 2.4.3.
For the determination of the active response, the optimal control procedure is
used again, implying that an ideal feedforward controller is used to tackle the
controller problem.

The numerical model of the laboratory setup is used to investigate different
actuator and sensor configurations for hybrid isolation. First, attention is
paid to the actuator configuration in section 4.5. For cost-effective hybrid
isolation, it is important to reduce the number of actuators and to reduce the
actuator effort needed to obtain active reduction. For this reason attention is
paid how to determine the most effective number of actuators and actuator
directions. Both the obtained active reduction and required actuator effort
are consequently considered to determine effective actuator configurations.

Also attention is paid to the sensor configuration used for active isolation.
First some vibration sensor strategies (AVC approach) are considered in sec-
tion 4.6. Results of different sensor strategies are considered with variation
of the location of the error sensors, i.e. locating the vibration sensors near
the source or at some distance from the source where the reduction is desired.
Also global error sensor strategies are investigated like the minimization of
the kinetic energy of the receiver structure. Attention is paid to the reduction
of the error sensor response itself, but also the influence of local vibration
control on the global response of the receiver structure ia analyzed. When
the vibrational response of the receiver structure is known, it is possible to
determine the acoustic sound field of a part of the receiver structure. In this
work, the free field radiation of a baffled part of the receiver structure and the
acoustic radiation of a part of the receiver structure into an acoustic enclosure
is considered. This enables consideration of acoustic error sensor criteria and
responses (ASAC approach) as presented in section 4.7.



4.2. Laboratory setup used for the numerical simulations 85

Finally some conclusions are drawn from the analysis of the different actuator
and sensor configurations and presented in section 4.8.

4.2 Laboratory setup used for the numerical simu-
lations

The laboratory setup built by TNO as a representative application for hybrid
isolation is shown in Figure 4.1. More detailed information about the labo-
ratory setup can be found in the diagram in Figure 4.2 and Table 4.1. The
different components of the isolation system are indicated in the figure: the
source, a mounting system consisting of passive vibration isolator, mounts and
actuators and a receiver structure. Notice that the whole system is supported
by soft supports to dynamically decouple the whole system from its environ-
ment. The mounting system is attached via the stiffeners on the foundation
plate. This test setup was designed to develop and test different active iso-
lation strategies and was used as a demonstration setup for an operational
hybrid isolation system. The test setup is simple enough to be modeled using
numerical techniques like the finite element method. These numerical simu-
lations are useful to analyze the influence of different actuator configurations
and sensor positions and other physical properties on the performance of the
hybrid isolation system in a relatively easy way. Besides that, responses of

cavity
receiver

source

mount /
actuator

Figure 4.1: Photo of the laboratory setup at TNO.
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Figure 4.2: Schematic picture of the laboratory setup at TNO.

the isolation system can be considered that are hard or impossible to mea-
sure at the setup, like the kinetic energy contents of the receiver structure.
Earlier work on this laboratory arrangement concerning actuator and sensor
positions was published by Basten and Verheij [2]. The experiences and re-
sults obtained with this numerical model provide insight into the use of the
hybrid isolation concept for the demonstrator and other complex applications
of resilient mounting systems.

4.3 Structural model

The hybrid isolation model is again considered to be composed of three compo-
nents: a source of vibration, a passive resilient mounting system and a receiver
structure. The three components are coupled with each other at the junctions
as described in chapter 2. However, the source is not modeled as a rigid mass.
Generally speaking, the dynamic behavior of the source is quite complicated,
resulting in a frequency dependent multi-directional vibration transmission to
the receiver structure. The dynamic behavior of a rigid mass is too simple for
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such complex excitations and for this reason the source is modeled by a force
excitation vector underneath the passive vibration isolators. The complete
model for this case is described by the equations presented in section 2.4.3.

4.3.1 Dynamics of the pedestals

The dynamics of the source is represented by a disturbance force vector acting
on top of the actuators as shown in Figure 4.2. The actuators are part of the
hybrid mounting system and are modeled as rigid pedestals. The dynamics of
the pedestals are represented using the field representation at the junctions (a
port at the top and at the bottom-side) of each mount of the mounting system,
as described in chapter 2. The frequency dependent forces and velocities at
each junction are represented by a vector with three translational and three
rotational components. This kind of representation is only valid for linear
systems [121, 122] and connections at the top and bottom of the pedestals are
modeled as point contacts. The resulting equations that relate the velocities
and forces at the junctions of the pedestals with each other can be written in
the same way as shown in section 2.4.3 as:

fd = Zss · vms + Zsr · vmr, (4.1)

fmr = Zrs · vms + Zrr · vmr + Ta · fa, (4.2)

where fd is the disturbance force vector acting at the top of the pedestals, Zss

and Zrr are the blocked dynamic driving point impedance matrices at the top
(source side) and bottom side (receiver side) of the pedestals respectively, Zsr

and Zrs are the blocked dynamic transfer impedance matrices of the mount-
ing support, Ta is a transformation matrix to define the degrees of freedom
which are actuated and fa is the vector containing the actuator forces. The
pedestals in this chapter are considered as beams and the impedance matrices
are calculated by harmonic analyses with the FEM package Ansys. In chap-
ter 5 attention is focused on the modeling of the rubber part of the mounting
system.

4.3.2 Dynamics of the receiver structure

Isolation systems used for heavy machinery such as in ships in general have
complex receiver structures. Numerical methods like FEM can be used to
obtain a dynamic model of this type of structure. However, in the literature
in most cases relatively simple isolation systems are considered which can be
described with an analytical formulation as shown in chapter 3. Jenkins et
al. [59] used a finite element approach to model a raft-isolator-receiver system,
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where the receiver was a clamped plate. In this chapter a general procedure is
presented to model isolation systems with complex receiver structures across
a large frequency range.

FEM equations

The finite element equations of motion for a linear dynamic structure are given
by:

M · ü(t) + C · u̇(t) + K · u(t) = f(t), (4.3)

where u(t) is the vector with the nodal structural displacements, f(t) is the
vector with nodal forces and M, C and K are the mass, damping and stiffness
matrices, respectively. Generally speaking, a FEM model contains many de-
grees of freedom (DOFs) for an accurate prediction of the dynamical behavior.
This involves large computation times for the evaluation. To reduce the com-
putation time, the number of DOFs is reduced with the mode superposition
technique, often used in the field of structural dynamics.

Modal expansion

The modal expansion is used to express the response of the FEM model in
terms of the undamped eigenvectors of the problem. The eigenvectors are
determined by solving the equations of motion for the undamped free vibration
problem (C = 0 and f = 0). When the excitation varies harmonically with
respect to the time (u(t) = u ejωt), the equation of motion reduces to:

(
−ω2M + K

)
· u = 0. (4.4)

The solution of this eigenvalue problem yields n eigenfrequencies ωi and cor-
responding eigenmodes φi where n is the number of DOFs. The matrices with
the eigenfrequencies Ω and eigenmodes Φ are defined as:

Ω =




ω1 0 · · · 0
0 ω2 0
...

...
. . .

...
0 0 · · · ωn


 Φ =

[
φ1 φ2 · · · φn

]
. (4.5)

The eigenmodes are normalized with respect to the mass matrix, resulting in:

ΦT · M · Φ = I, (4.6a)

ΦT · K · Φ = Ω2, (4.6b)
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where I is the identity matrix. The solution of u for each frequency can now
be written in the form of a modal expansion according to:

u = Φ · q , (4.7)

where q is the vector with modal participations. Substituting equation (4.7)
in equation (4.3) and pre-multiplying with ΦT yields:

− ω2I · q + jωΦT · C · Φ · q + Ω2 · q = ΦT · f . (4.8)

If the term ΦT · C · Φ is a diagonal matrix, the equations of motion are
uncoupled. Often a diagonal matrix with a damping ratio for each mode i is
composed (or determined with measurements) according to:

ΦT · C · Φ = diag(2ζi ωi) = 2Ξm · Ω, (4.9)

where ζi is the damping ratio of mode i and Ξm is the so-called modal damping
matrix. Another damping mechanism that results in a diagonal damping
matrix is the so-called proportional damping or Rayleigh damping, where the
damping matrix is a linear combination of the mass and stiffness matrices:

C = αM + βK, (4.10)

resulting in:
ΦT · C · Φ = diag(2 ζiωi) = 2Ξp · Ω, (4.11)

where ζi is the damping ratio of mode i and Ξp is the modal damping matrix
for the proportional damping mechanism. It can be shown that the damping
ratio of each mode is related to the factors α and β of equation (4.10) according
to:

ζi =
1

2

(
α

ωi
+ β ωi

)
. (4.12)

In the case of these two damping mechanisms, the modal participations for
each mode are determined by:

qi =
φi · f(

−ω2 + 2jωζiωi + ω2
i

) , i = 1 . . . n. (4.13)

Another way to model damping is by means of the implementation of a com-
plex stiffness matrix, which is referred to as structural damping. The equa-
tions of motion for this damping model and for a construction with isotropic
material become:

− ω2q + (1 + jη)Ω2 · q = ΦT · f , (4.14)
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where η is the structural loss factor. The modal participations are then deter-
mined by:

qi =
φi · f(

(1 + jη)ω2
i − ω2

) , i = 1 . . . n. (4.15)

Truncated modal superposition and residual flexibility

In a similar way as in section 3.2.3, the model is reduced by truncation of the
modal expansion, depending on the frequency range of interest. When only
m modes instead of the total number of modes n are taken into account, the
expansion for proportional or modal damping can be written as:

u =
m∑

i=1

φiqi +
n∑

i=m+1

φiqi, qi =
φi · f(

−ω2 + 2jωζiωi + ω2
i

) . (4.16)

The term that is omitted in the truncated modal superposition can again be
estimated in terms of a static response:

u ≈
m∑

i=1

φi · φT
i · f(

−ω2 + 2jωζiωi + ω2
i

) + u0 −
m∑

i=1

φi · φT
i · f

ω2
i

. (4.17)

For structural damping, the truncated modal expansion becomes:

u =
m∑

i=1

φiqi +
n∑

i=m+1

φiqi, qi =
φT

i · f
(1 + jη)ω2

i − ω2
. (4.18)

The truncated modal expansion with residual flexibility is consequently deter-
mined by:

u ≈
m∑

i=1

φi · φT
i · f

(1 + jη)ω2
i − ω2

+
u0

(1 + jη)
−

m∑

i=1

φi · φT
i · f

(1 + jη)ω2
i

. (4.19)

The response in terms of velocities is determined in the same way, by
multiplication with a jω term because of the harmonic time dependence. Us-
ing equation (4.17) or (4.19), the response at different points of the receiver
structure can be determined for different excitations of the receiver structure.
With a prescribed excitation at each junction of the receiver structure in each
degree of freedom the velocity response at all degrees of freedom at the junc-
tion points can be determined, resulting in the following mobility matrix as
discussed in section 2.4:

vr = Yr · fr. (4.20)
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4.4 Total model

In this section a numerical model of the laboratory setup is introduced and
analyzed in more detail. The theory presented earlier in this chapter is ap-
plied to this numerical model and passive and active results for structural and
acoustic error criteria are presented. First, the passive behavior of the model
is analyzed. After that, attention is paid to the actuator configuration and
results are presented for different error sensor strategies.

4.4.1 Laboratory arrangement

In Figure 4.2 a schematic picture of the laboratory setup is presented. The
receiver consists of a carrier structure and an enclosure into which sound is
radiated by a part of the carrier structure, the so-called radiation plate. Fur-
thermore, a foundation plate and a side plate are distinguished as part of the
carrier structure. The carrier structure is built from stiffened plates and beams
and the overall dimensions are approximately 1.75m× 0.9m× 0.85m. The en-
closure is a wooden box with approximate dimensions 1.2m × 0.9m × 1.4m.
More information about the dimensions of the laboratory setup are shown in
Table 4.1.

Component Parameter Value

Foundation plate Dimensions (Lx × Ly × h) 950 × 850 × 3 mm

Side plate Dimensions (Lx × Lz × h) 1700 × 800 × 3 mm

Radiation plate Dimensions (Ly × Lz × h) 850 × 800 × 3 mm

Mounts (4) Dimensions (diameter × height) 50 × 100 mm

Cavity Dimensions (Lx × Ly × Lz) 1200 × 900 × 1400 mm

Table 4.1: Most important dimensions of the laboratory setup.

4.4.2 Finite Element Model of the laboratory setup

For an easy investigation of different active isolation concepts, a numerical
FEM model is made of the laboratory setup [90]. The main goal is to have
a numerical model that is representative for realistic applications. For this
reason the demonstrator has relatively large dimensions and is composed of
plates and beams and beam-stiffened plates. The structure must have a ‘com-
plex’ behavior in a dynamic perspective, meaning that a variety of dynamic
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deformation shapes occur in the considered frequency range. Another typical
property of complex structures is a high number of modes and corresponding
high modal density. Furthermore, it is necessary that the machinery excite
the structure at different locations (multi-point) and in different directions
(multi-directional). First, it is examined whether the numerical model is rep-
resentative with respect to its dynamical behavior. The finite element model of

(a) 1.1 Hz (b) 85.4 Hz

(c) 445 Hz (d) 618 Hz

Figure 4.3: Different structural modes of the receiver structure.

the demonstrator is composed in Ansys and consists of linear shell elements
(four-node SHELL63 elements) and three-dimensional beam elements (two-
node BEAM4 elements) [82]. The material properties used for the numerical
analysis of the structure are shown in Table 4.2.

Four of the eigenmodes resulting from the modal analysis are depicted in
Figure 4.3. The mode shown in Figure 4.3(a) has an eigenfrequency of 1.1
Hz and is one of the ‘rigid body’ modes, clearly distinguished by the rigid
motion of the whole structure on the soft mounts. Six of these modes are
present because the whole structure moves as a rigid body on the relatively



4.4. Total model 93

Component Parameter Value

Young’s modulus E 210 GPa

Poisson’s ration ν 0.3 [-]

Structural loss factor η 0.01 [-]

Density ρ 7800 [kg/m3]

Table 4.2: Material properties used for the numerical model of the laboratory setup.

soft supports. These modes have very low eigenfrequencies and are the first
modes in the series of the calculated eigenmodes. The second mode which is
shown in Figure 4.3(b) is an example of a ‘global mode’, meaning that the
structure deforms in a global sense. This kind of mode occurs especially in the
lower frequency range. At higher frequencies the eigenmodes are quite complex
and may have very local deformations as shown in Figure 4.3(c) or may have
a combination of global and local deformation as for example the mode shown
in Figure 4.3(d). Besides the variety of the type of modes, a high number of
modes and a high modal overlap are representative for vehicle structures in
general. For the considered laboratory model, around 250 modes are found
with an eigenfrequency below 1000 Hz. An indication of the modal overlap
can be obtained using the natural frequencies of the structure by definition of
the half-value bandwidth [23]:

b = ηfn, (4.21)

where b is the half-value bandwidth, η is the structural loss factor and fn is the
nth natural frequency of the structure. The half-value bandwidth is defined as
the frequency band around the natural frequency where the response is larger
than half of the value of the peak response. With the assumption that each
mode is excited equally, an indication of the modal overlap can be calculated
as shown in Figure 4.4. The modal overlap is determined with a structural
loss factor of η = 0.01 (see Table 4.2) and for a frequency resolution of 2 Hz
(500 frequency steps). For each frequency it is checked whether this frequency
is situated in the half-value bandwidth of a natural frequency. The natural
frequencies that fulfill this condition are subsequently summed, and in this way
an indication of the modal overlap is obtained at the considered frequency. The
modal overlap is quite high, especially at high frequencies, meaning that the
total response at a single frequency is dominated by several modes, which is
representative for many large structures in practice.
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Figure 4.4: Modal overlap of receiver structure.
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1
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4

mount Comp. Value

1 fx, fy, fz 1 N
mx, my, mz 1 Nm

2 fx, fy, fz 1 N
mx, my, mz 1 Nm

3 fx, fy, fz 1 N
mx, my, mz 1 Nm

4 fx, fy, fz 1 N
mx, my, mz 1 Nm

Figure 4.5: Disturbance force configuration used for the simulations.

Although the analytical model of the isolation system described in chapter 3
showed some insight concerning the modeling of isolation systems, it appeared
that the model was too simple to describe a real multi-directional structural
power transfer from the source to the receiver. The structural power trans-
mission was dominated by the normal direction of the receiver plate. To
investigate the power transfer of the numerical model of the laboratory setup,
four mounts are attached to the foundation plate and the source is represented
by a harmonic unit force in all translational and rotational directions at the
top of the mounts. The mounts are modeled as rigid pedestals, and are the
parts of the receiver structure underneath the passive vibration isolators as
shown in Figure 4.2. The disturbance configuration is shown in Figure 4.5.
The disturbance force configuration and the mount properties are used for the
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Figure 4.6: The total injected structural power by the four mounts into the receiver
structure in the translational directions (a) and rotational directions (b).

simulations throughout this chapter. To investigate the injected structural
power into the receiver structure, the structural power components of each
DOF are summed over the mounts; i.e. the total injected power in the x-
direction is determined by summation of the injected power in the x-direction
of each mount. This is repeated for each DOF, i.e. the translational x, y and
z-directions and the rotational x, y and z-directions. The injected structural
power into the receiver structure at the junction locations is thus considered.
The total injected power in the x-, y- and z-directions is shown in Figure 4.6(a).
In the low frequency range the transmitted power is not dominated by one of
the translational directions, but at frequencies above the 600 Hz the power
transmission in the x- and y-directions dominates over the power transmission
in the z-direction, which is the direction normal to the foundation plate. Con-
sidering the injected power by the rotational DOFs into the receiver structure
in Figure 4.6(b), it can be seen that in the frequency range up to 500 Hz the
injected power in the translational directions is a little larger than in the rota-
tional directions. In the frequency range above 500 Hz the power transmission
in the rotational degrees of freedom is of the same order of magnitude as the
power transmission in the translational directions. The contribution of the
power transmission in the torsional direction (rotational direction around the
z-axis) to the total injected power is small for frequencies above 300 Hz. It
can be concluded that all directions are important for the vibrational power
transmission.

To reduce computation times, the complete mobility matrices of the re-
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Figure 4.7: Two mobility components of the receiver structure determined with the
modal expansion theory and the full harmonic analysis.

ceiver structure are determined by a modal expansion and residual modes as
shown in equations (4.17) and (4.20). Besides using a modal expansion, the
FRF components can also be determined with a full harmonic analysis. For
this purpose the FEM package Ansys is also used. To investigate the accuracy
of the modal expansion, two mobility components are determined in both ways
and compared to each other. The two components are part of the mobility
matrix Yr, which relates the force and velocity components with each other
at the junction points of the receiver structure. The driving point mobility of
the receiver structure at the position of mount 1 in z-direction is depicted in
Figure 4.7(a) (indicated by Yr3,3) and a transfer mobility between a force exci-
tation in the z-direction at the position of mount 1 and the rotational velocity
response in the x-direction of mount 3 is depicted in Figure 4.7(b) (indicated by
Yr16,3). Both FRFs determined with the modal expansion theory correspond
very well with the full harmonic responses, meaning that the implementation
of the modal expansion and coupling with the mounting system is correct.

4.5 Active isolation: actuator configuration

The actuator configuration of the laboratory model is considered in more detail
in this subsection. For the considered model, many possible actuator config-
urations exist and can be investigated, but this analysis is restricted to the
following three issues:

• Active isolation for actuator configurations with a different number of
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Figure 4.8: Schematic picture of the numerical model of the laboratory setup with the
disturbance force configuration, actuator configuration and performance sensor set on the
radiation plate.

actuators for a single direction.

• The influence of actuator weighting on the active response.

• Active isolation for a fixed number of actuators but with variation in the
directions or DOFs of actuation.

Variation in the position of the actuators is not analyzed and the actuators
are modeled as external forces acting on the receiver structure at the junction
locations (the bottom side of the mounts) as shown in Figure 4.8. Also a
schematic detailed plot of a mount (pedestal) is shown with one disturbance
moment around the y-axis and an actuator force component in the x-direction.
The performance of the different actuator configurations are examined by the
achieved reduction of the error sensor set on the radiation plate in combi-
nation with the total actuator effort needed to obtain this reduction. The
performance sensor set consists of a set of 25 vibration sensors measuring
the velocity in the normal direction to the radiation plate and is shown in
Figure 4.8.
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4.5.1 The influence of the number of actuators

In section 2.3.3 it was suggested that for total isolation of the source from
the receiver structure, the number of actuators must equal the number of
structural transmission paths. This means that for the model of the labora-
tory setup studied here in theory 24 actuators are needed for total isolation
(24 DOFs of excitation and 24 DOFs of vibration transmission to the receiver
structure). In that case no vibrations are transmitted to the receiver structure
at all. However, analysis showed that with far fewer actuators a considerable
reduction can still be obtained of the vibrational response of such ‘complex’
receiver structures [7]. For the applications of hybrid isolation systems con-
sidered here, the number of actuators must be as small as possible for reasons
of cost, difficult implementation and the control effort that is needed to drive
the actuators.

The sensor response can be expressed in terms of the dynamic eigenmodes
and corresponding participations as shown in section 4.3.2. In theory, one
actuator is able to suppress the contribution of the response of one eigenmode,
assuming that the actuator is able to excite the corresponding mode. The
discrete isolation model described in section 2.3 showed that, when the number
of actuators was less than the number of structural transmission paths, each
actuator was able to suppress the vibration of one mass. In the considered
applications no direct information is available on the number of dominant
modes in the sensor response and this is also very difficult to determine. The
available information of the structure only consists of the measured FRFs
from the source and actuators to the sensor response. Basten and Verheij [2,
91] showed that with these measured FRFs an estimation of the number of
dominant ‘modes’ can be obtained by means of Singular Value Decomposition.
This technique is elucidated with a decomposition of the primary path, i.e. the
matrix of FRFs from the disturbance forces to the sensor response. The SVD
decomposition of the primary path can consequently be determined for each
frequency:

Hvsr
p = U · S · VH =

∑

i

ui si v
H
i , (4.22)

where U is a matrix whose columns contain the field shapes, S is a diagonal
matrix with singular values in decreasing order and V is a matrix whose
columns contain the so-called source shapes. More details concerning the
SVD analysis can be found in appendix C. In Figure 4.9 the singular values
of Hvsr

p are shown as functions of the frequency. The first singular value
is relatively large, meaning that the combination of the first field shape and
source shape makes a large contribution to the primary path. This means that
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Figure 4.9: The first 7 singular values of the primary path to the error sensor set on the
radiation plate.
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a good representation of the Hvsr
p can already be obtained when only the first

singular value is taken into account. The singular values decay with increasing
number, meaning that the contribution of the field shapes and corresponding
source shapes also becomes less important with increasing number. When
this is translated to the number of actuators that are needed to suppress the
vibrations caused by the source and transferred to the error sensor by the
primary path, one single actuator already results in considerable reduction.
Increasing the number of actuators will result in a decrease of the error sensor
response, because the contributions of more field shapes can be reduced.

To investigate the influence of the number of actuators on the active perfor-
mance of the isolation system, seven different configurations with an increasing
number of actuators are analyzed. The SVD analysis of the primary path as
shown in equation (4.22) is used to determine the effectiveness of the actuator
influence. The different actuator configurations are shown in Table 4.3. The
actuators are all located at the junctions with the receiver structure as can
seen in Figure 4.8. The disturbance force vectors on top of the mounts are
also depicted, and have the same values as shown in Figure 4.5. The response
of the receiver structure is evaluated by the sensor set consisting of 25 sensors
measuring the normal velocities on the radiation plate. Subsequently, simula-
tions are performed with the described configuration and with minimization
of the error sensor set on the radiation plate for the different actuator config-
urations. The error sensor set and the sensor set to evaluate the performance
are thus the same in this situation. The reductions obtained for the different
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Actuator set number Number of act. Mount number, DOF

set 1 1 1,z

set 2 2 1,z 2,z

set 3 3 1,z 2,z 3,z

set 4 4 1,z 2,z 3,z 4,z

set 5 5 1,x,z 2,z 3,z 4,z

set 6 6 1,x,z 2,x,z 3,z 4,z

set 7 7 1,x,z 2,x,z 3,x,z 4,z

Table 4.3: Definition of the actuator sets with different number of actuators.

actuator configurations are compared to each other. In Figure 4.10 the active
responses are shown for the actuator sets 1 to 4 as well as the passive response.
With just one actuator (actuator set 1) the response is already reduced, as
was expected from the SVD analysis. When the number of actuators increases,
the obtained reduction increases considerably up to the configuration of four
actuators. The obtained reductions at the error sensor set when the number of
actuators is increased even further is shown in Figure 4.11 for the actuator sets
4 to 7. Actuator set 5 (with 5 actuators) does not result in considerable extra
reduction in the response up to 800 Hz. With actuator set 6 and especially
actuator set 7 extra reduction of the error sensor response is obtained.

The first point of attention is the reduction at the error sensor set, but
another important fact is the actuator effort needed to obtain this reduction.
The actuator effort is determined by evaluation of the quadratic sum of the
actuator forces. In Figure 4.12(a) the actuator effort is shown for the actuator
sets 1 to 4. The first actuator configuration needs less effort compared to the
configurations 2 to 4. It can be observed that the actuator effort of the actuator
configurations 2 to 4 are of the same order of magnitude. In Figure 4.12(b)
the total actuator effort is shown for the actuator sets 4 to 7. For the actuator
sets 6 and 7 the actuator effort is considerably larger than for the sets 4
and 5, meaning that a lot of extra actuator force is needed to obtain the extra
reduction in the sensor response. This phenomenon is explained in more detail
when the actuator effort weighting is explained.

The tendency for each extra actuator to result in extra reduction in the
sensor response obtained agrees in general with the conclusions drawn from the
SVD analysis of the primary path. The actuators reduce in the first place the
most dominant field shapes. This is shown by the amount of reduction which
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Figure 4.10: Passive response and active response of the sensor set on the radiation plate
for actuator sets 1 to 4, obtained by minimization of the same sensor set.
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Figure 4.11: Passive response and active response of the sensor set on the radiation plate
for actuator sets 4 to 7, obtained by minimization of the same sensor set.
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Figure 4.12: Actuator effort for minimization of the sensor set on the radiation plate for
the considered actuator sets.

is already obtained with just one or a few actuators. When more actuators
are used, the less efficient field shapes are also minimized. This is especially
visible for the actuator sets with six or more actuators: the minimization of
the less efficient field shapes requires a relatively large actuator effort.

To investigate the effect of the actuators on the field shapes, the participa-
tion of the field shapes in the total deformation is considered in more detail.
The passive sensor response in terms of the singular vectors can be written as:

vsr = U · S · VH · fd. (4.23)

Pre-multiplying this equation by UH and taking account the fact that U is
unitary yields:

UH · vsr = S · VH · fd. (4.24)

Because U and V are orthonormal, pre-multiplication with the Hermitian of
these matrices can be interpreted as a projection of the error sensor response
vsr and disturbance force fd onto two linearly independent bases. The par-
ticipations of each field shape in the sensor response and source shape in the
disturbance force are collected in the vectors ṽsr and f̃d respectively, defined
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as:

ṽsr = UH · vsr, (4.25a)

f̃d = VH · fd. (4.25b)

The participations of each field shape are determined by substitution of the
sensor response into equation (4.25a). The influence of the actuators on the
participations is determined by substitution of the active sensor response for
the term vsr into this equation. This is done for the actuator configurations
2, 4 and 7. The participations of the first four field shapes in the active sensor
response are shown in Figure 4.13. Actuator configuration 2 is only able to
reduce the participations of the first two field shapes. The contribution of
field shape 1, with the largest contribution in the sensor response, is mostly
reduced. Actuator configuration 4 is also able to reduce the contributions of
the third and fourth field shapes. Also, a larger reduction of the participations
of each field shape is obtained in comparison to the configuration with two
actuators. Considering actuator configuration 7, the additional actuators in
comparison with configuration 4 are only able to reduce the participations
of field shape three and higher and no considerable extra reduction of the
participations of the first two field shapes is obtained. This means that the
extra active reduction is obtained by excitation of the less efficient field shapes
which require high actuator forces to reduce its participations.

4.5.2 Weighting of the actuator effort

It was shown that the actuator effort for the actuator configurations with more
than five actuators increased considerably. To investigate this effect in more
detail, the quadratic Hermitian cost function can be modified by taking ac-
count of a weighted actuator term as explained in section 2.6.5. The purpose
of the actuator weighting term in the cost function is to take account of the
effort being expended by the control system, so that small reductions in the
sensor output are not obtained at the expense of very high actuator effort
levels. In Figure 4.14 the active response is depicted for actuator set 7 with
different actuator weighting coefficients µ. Weighting of the actuator effort
results on the one side in less performance, but on the other side the actuator
effort is reduced considerably as shown in Figure 4.16(a). The 20 dB reduction
of the sensor response costs in fact about a factor ten more actuator effort for
this actuator set. A similar analysis is performed for actuator set 4 and shown
in Figure 4.15. The actuator weighting reduces the obtained reduction, but
the actuator effort is hardly reduced as can be seen in Figure 4.16(b). The
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Figure 4.13: Participations of the first four field shapes for the passive response and the
active error sensor responses with actuator configurations 2, 4 and 7.

sets with more than five actuators also put a lot of effort in the suppression of
non-efficient deformation modes. In practice this amount of actuator effort is
not available, and for the four point mounting system on this laboratory struc-
ture, a number of four actuators is a good compromise between the obtained
reduction and the actuator effort required.



4.5. Active isolation: actuator configuration 105

0 200 400 600 800 1000
−120

−100

−80

−60

−40

−20

0

Frequency [Hz]

passive
µ = 0
µ = 1 · 10−12

µ = 1 · 10−11

µ = 1 · 10−10

v
H s
r
·
v

s
r

[d
B

re
1

m
2
/
s2

]

Figure 4.14: Passive response and active response at the sensor set of the radiation plate
of the laboratory setup for different weighting factors of the actuator forces for actuator
set 7.
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Figure 4.15: Passive response and active response at the sensor set of the radiation plate
of the laboratory setup for different weighting factors of the actuator forces for actuator
set 4.
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Figure 4.16: Actuator effort for minimization of the error sensor response on the radiation
plate for actuator configurations number 7 (a) and 4 (b).

4.5.3 Active isolation for different actuator directions

Besides the number of actuators, the directions of actuation are also important
for active control. For the actuator configuration 4, the actuator forces are
exerted in the axial direction of the mounts (in the z-direction), thus normal
to the foundation plate. The four actuators can also be configured in such
a way that the actuator forces are applied in the x-direction or y-direction
(the in-plane directions) of the foundation plate (see also Figure 4.8). The
configuration is the same as for the previous simulations presented in this
chapter and the same disturbance force vector is used. In Figure 4.17 the
reduction of the considered error sensor set on the radiation plate is shown for
actuation in the different translational directions. The configuration with the
actuator forces in the axial direction of the mounts shows the best performance.
Considering the obtained results and practical implementation, it is preferable
to situate the four actuators in the axial directions of the mounts.

For real-life applications, most of the time it is difficult to test different
actuator configurations because of practical restrictions. To get an indica-
tion of the most effective actuator directions, the SVD approach can be used.
This technique was demonstrated by Basten and Verheij [2] for frequency re-
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Figure 4.17: Passive response and active responses at the sensor set on the radiation
plate for actuation in the translational x-, y- and z-directions with four actuators.

sponse measurements on the laboratory setup. Here, this technique is applied
in the same way on the numerically determined FRFs. For this purpose, the
secondary path function Hvsr

s as shown in section 2.6.3 (equation (2.90)) is
considered. This is the secondary path transfer from all possible actuator po-
sitions and directions which are chosen to be interesting for the active isolation
to the sensor set (in this case the error sensor set on the radiation plate). In
this case the x-direction, y-direction and z-direction at all the junctions of
the mounts with the receiver structure are considered, thus in total 12 DOFs
for actuation. In a similar way as shown in equation (4.22), the SVD of the
secondary path is defined for each frequency as:

Hvsr
s = U · S · VH

=
∑

i

uisiv
H
i , (4.26)

where U is a matrix with the left singular vectors ui representing the preferable
response patterns of the error sensors on the radiation plate, S is a diagonal
matrix with the singular values in decreasing order and V is a matrix with the
right singular vectors vi representing combinations of actuator forces that are
able to excite the field shape in an effective way. In Figure 4.18(a) the first four
largest singular values are plotted as functions of the frequency. It is shown
again that a large part of the response is determined by just one singular value
and the corresponding field and source shapes. The information regarding
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Figure 4.18: The singular values of the secondary path transfer (a) and the contributions
to the first field shape for the three actuator directions at mount number 2 (b).

which actuator direction ‘couples’ best with the field shapes is determined by
the singular values and the source shapes, and is determined for the coupling of
the ith field shape and the jth actuator direction by siVij . The influence of the
actuator directions on the first field shape is the most important one because of
the dominance of the first singular value. In Figure 4.18(b) the contributions of
the actuators in the x-, y- and z-directions of mount number 2 to the first field
shape are shown. The most efficient actuator direction is dependent on the
considered frequency range, but in general the z-direction is the most efficient
direction for actuation. This is conform to the results presented previously
in this section and shown in Figure 4.17. The contributions of the different
directions at the other mounts resemble the situation of mount number 2. It
must be stressed that it only provides an indication of the effectiveness of the
actuator directions, the actual reductions with active control also depends on
the disturbance.

4.6 Active isolation: vibration sensor strategies

The influence of different sensor strategies on the structural response of the
receiver structure is considered in this section. The configuration of the con-
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Figure 4.19: Schematic picture of the numerical model of the laboratory setup with the
disturbance, actuator and sensor configurations.

sidered isolation system is shown in Figure 4.19. The mounts are assumed to
be rigid and the disturbance configuration is the same as that used for the
previous simulations and shown in Figure 4.5. The structure is excited at the
top side of each mount with a unit force in all translational directions and a
unit moment excitation in all rotational directions. The actuators are situ-
ated at each connection point between the mounts and the receiver structure
and act in the axial direction of each mount. This corresponds with actuator
configuration 4 in Table 4.3, which was the best trade-off in terms of achieved
reduction and actuator effort. The response of the receiver structure is again
judged by the vibrational response of the error sensor set on the radiation
plate.

In Figure 4.20(a) the total normal velocity response of the radiation plate
is depicted respectively in the passive situation, and for the active situation
with minimization of the sensor set response and with minimization of the total
normal velocity response of the radiation plate vrp. The total normal velocity
response of the radiation plate is the set of normal velocities at all the 361
nodes of the FEM mesh on the radiation plate. It is seen that large reductions
compared to the passive situation are obtained and that the difference between
the two active responses is very small. Therefore the defined error sensor set
with 25 sensors only represents a good measure of the total normal velocity
distribution of the radiation plate in the considered frequency range.
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When the error criterion of the total injected structural power from the
mounting system into the receiver structure is used, reduction of the sensor
response is also obtained as shown in Figure 4.20(b). However, the reduction
obtained is less compared to minimization of the sensor set response itself. The
reason for this is that this cost function tries to minimize a global measure (the
sum of the kinetic and potential energy) of the whole receiver structure. The
vibrational response of the radiation plate makes just a small contribution to
the total kinetic energy of the receiver structure.

Apart from error criteria related to the vibrational response of the radiation
plate, error sensors can also be situated near the source or the mounts. This
concept resulted in a good active reduction of the vibrational response of the
receiver structure considered in chapter 3. This is not the case for the model
considered in this chapter. In Figure 4.20(c) and 4.20(d) the response of the
error sensor set on the radiation plate is shown for minimization of all the
connection velocities and connection forces respectively. These error sensor
criteria do not function properly for the laboratory model. The dynamic
behavior of the receiver structure is not dominated by only a few excitation
directions and the dynamic behavior is much more complex. The minimization
of the connection velocities seems to work in the lower frequency range (up
to approximately 150 Hz) where reduction is obtained by suppression of the
global modes of the receiver structure that are also measured in a certain
way by the sensors near the mounts. At higher frequencies, these strategies
fail because of the local deformation patterns of the receiver structure, which
implies that the chosen cost functions consisting of the near-source velocities
or the near-source forces are not a good measure for the structural vibration
of the radiation plate.

4.6.1 Global reduction

An important issue for the active control of vibration or sound in general is
the influence of the actuator excitation on the response of the system at other
locations than the locations of the error sensors. The effort of the actuators
is only focused on the reduction of the error sensor response. This can result
in an increase of the response at other locations. In the ideal case a global
reduction of the response is achieved by choosing a suitable sensor set. In
this chapter a sensor set on the radiation plate is considered with the goal
of reducing the vibrational response and sound radiation of this part of the
receiver structure. To investigate the effect of an increase in the response at
other locations on the structure than the error sensors, the performance of
these local error criteria is determined in terms of the global response of the
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Figure 4.20: Passive and active responses of the radiation plate: active response in terms
of all normal nodal velocities on the radiation plate vrp (a) and the active response at
the error sensor set on the radiation plate vsr for minimization of transmitted power (b),
minimization of the junction velocities (c) and minimization of the junctions forces (d) at
the receiver structure.



112 Numerical studies on a laboratory setup of a hybrid isolation system

receiver structure.

The influence of different error criteria on the kinetic energy of the receiver
structure is considered first, so the kinetic energy is considered as a perfor-
mance measure. In Figure 4.21 the kinetic energy of the receiver structure is
depicted for different error criteria. The calculation of the kinetic energy is
explained in more detail in section 2.6.3 and appendix B. It is shown that the
performance achieved with minimization of the transmitted power is almost
equal to the performance with minimization of the kinetic energy for higher
frequencies. In the low frequency range, the potential energy content of the
structure is also considerable, which explains the difference in active response
between these two error criteria. Active isolation using the error sensor set
on the radiation plate yields some reduction in the kinetic energy response
in the frequency range up to 500 Hz. In the higher frequency range hardly
any reduction in terms of kinetic energy is obtained and in fact an increase in
response is observed. This means that, although a reduction of the error sen-
sor response is obtained, the actuator effort causes an increase of vibration at
other locations to such an extent that the total kinetic energy of the structure
increases. This side effect is not desirable.
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Figure 4.21: Passive response and active responses in terms of the kinetic energy for
minimization of the transmitted power and the error sensor response on the radiation
plate.

The contribution of the structural response near the source (e.g. the vibrations
of the foundation plate) has the largest contribution in the total kinetic energy
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of the receiver structure [6]. This can be misleading, because in practical
applications it may not be necessary to actively suppress the response near
the source but a ‘global’ suppression may be desirable at some distance away
from the source (in this case the response on the radiation plate). To take
this effect into account, another global sensor set is considered which consists
of the combined normal velocity response at the side plate and the radiation
plate. This velocity sensor response is indicated by vgl. In Figure 4.22 the
global velocity response is shown for some of the error criteria as considered
for the kinetic energy response. Minimization of the injected structural power
results in a reduction of the global velocity response. Active isolation using
the sensor set on the radiation plate results in a better reduction in terms of
global velocity response than in terms of reduction of the kinetic energy. This
means that both the choice of the error criterion and the response to judge
the performance of the error criterion have to correspond with the goals to be
achieved with active isolation. It can be concluded that a global error criterion
has to be chosen in order to obtain a global reduction.
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Figure 4.22: Passive response and active responses of the receiver structure in terms of
the global far field response (the normal velocity response at the side and radiation plate
of the receiver structure) for minimization of the transmitted power and error sensor set
response on the radiation plate.
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4.7 Active isolation: acoustic sensor strategies

In the previous sections, only error sensor criteria were considered related to
the structural response of the receiver structure. Instead of using vibration
error sensors (acceleration pick-ups), acoustic error sensors (microphones) can
be used for the purpose of active isolation. The advantage of the latter type of
error criteria is that the desired goal, namely reduction of noise, is directly min-
imized. In this section, the performance of the receiver structure is considered
in terms of acoustic quantities. The influence of different error criteria on two
types of acoustic responses is determined: the free field acoustic radiation of
the baffled radiation plate and the acoustic radiation of the radiation plate into
an enclosure. Besides determining the acoustic performance responses, differ-
ent acoustic error criteria can also be investigated like the minimization of
pressure responses in the enclosure (measured by microphones). More details
concerning the calculation of the acoustic response and the implementation of
acoustic error criteria were described in sections 2.5 and 2.6.4 respectively.

4.7.1 Active isolation of free field radiation

The sound power radiated into a free field can be approximated by weighting
of the total normal velocity response of the radiation plate with the radi-
ation matrix for a plate in a baffle. This was explained in more detail in
section 2.5.2. The radiated sound power can consequently be written as a
Hermitian quadratic error criterion (see also equation (2.96)) according to:

W̄ = vH
rp · R · vrp. (4.27)

In Figure 4.23 the radiated sound power of the radiation plate is presented
for the passive situation as well as the active responses with minimization of
the structural transmitted power and with minimization of the error sensor
response. Minimization of the injected structural power does not result in a
large reduction of the radiated sound power of the radiation plate for frequen-
cies above 300 Hz. Minimization of the error sensor response on the radiation
plate, indicated by vsr and shown in Figure 4.19, reduces the radiated sound
power to almost the same extent as minimization of the radiated power it-
self. For frequencies lower than 300 Hz, reductions with minimization of the
radiated sound power are considerably larger than just minimization of the
normal velocity response. The error sensor criteria that minimize the radiated
sound power, also changes the shape of the vibration of the radiation plate
in such a way that the sound radiation is not efficient ((like the (1,2) mode
of a plate where one part of the plate absorbs the acoustic radiation of the
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other part). However, this only works in the lower frequency range where the
radiation plate is deformed in a global sense.

In practice it is not straightforward to use radiated sound power as an
error criterion for the controller. A method is to weight the structural error
sensors (measuring the normal velocity response) in such a way that the re-
sulting error criterion is a measure of the radiated sound power. Of course
the radiation matrix can be used, but to save computational effort which is
an important issue for active control, it is possible to introduce normal veloc-
ity distributions that contribute independently to the radiated sound power.
These normal velocity distributions are called radiation modes and were first
introduced by Borgiotti [16]. More details about radiation modes can be found
in appendix C.1.
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Figure 4.23: The radiated sound power of the radiation plate for the passive situation and
with active control with minimization of the injected structural power (Pt), minimization
of the error sensor set response on the radiation plate (vsr) and for minimization of the
radiated sound power itself.

4.7.2 Active isolation of sound radiation into an enclosure

A part of the laboratory setup consists of an acoustic enclosure attached to
the radiation plate. This is a simplified representation of an interior space like
a ship cabin. The source causes vibrations in the whole receiver structure.
In this section some error criteria are investigated that minimize the pressure
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Figure 4.24: Acoustic mesh of the enclosure.

levels in the enclosure by active isolation of the source. Three different error
criteria in terms of the enclosure response are considered: the acoustic poten-
tial energy in the enclosure Ep (a), the total pressure response in the enclosure
pe (b) and the pressure response at the corners of the enclosure pc (c). The
quadratic error criteria are defined respectively (see also section 2.5.3) as:

Ep =
1

4ρc20
QH · Λ · Q, (4.28a)

Jp = pH
e · pe = vH

rp · ZH
e · Ze · vrp, (4.28b)

Jcp = pH
c · pc = vH

rp · ZH
c · Zc · vrp, (4.28c)

where pc is the vector with pressures at the corners of the cavity (see Fig-
ure 4.24). Q is the vector with modal participations of the acoustic modes
determined by the normal velocity distribution (see also equation (2.69)), Λ
is a matrix with the modal volumes (shown in equation (2.52)) of the acoustic
modes, Ze is the impedance matrix from the normal velocity field on the radi-
ation plate vrp to the pressure at all the nodes of the enclosure and Zc is the
impedance matrix from the normal velocity field on the radiation plate vrp to
the pressure at the corner nodes of the enclosure. In Figure 4.25 the acoustic
potential energy response of the enclosure is depicted with minimization of
the three considered error criteria. The reduction obtained with minimization
of the total pressure response of the cavity is the same as with minimization
of the acoustic potential energy. This is expected because of the equidistant
mesh of the enclosure that is used for the FEM simulations. The reduction
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obtained when only the pressure response at the corners of the enclosure is
used also yields very good reductions. The pressure response at the rigid walls
is maximal due to the absence of damping at the walls. This means that the
pressure response at the corners is a maximum signal because all modes have
pressure maxima in the corners and at the boundaries. For this reason a good
reduction of the acoustic potential energy is obtained with minimization of the
pressure response at the corners only. Active isolation using actuators near
the source and error sensors in the enclosure works very well for the reduction
of the interior noise.
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Figure 4.25: Passive response and active responses in terms of the acoustic potential
energy in the enclosure for minimization of all the pressures and the pressures at the
corners of the enclosure.

The influence of structural error criteria on the pressure response of the en-
closure is now investigated. In Figure 4.26 the acoustic potential energy is
depicted when the transmitted power and the error sensor set response on
the radiation plate are minimized for the described actuator and disturbance
configuration. The difference between vibration control and acoustic control
can clearly be observed. The structural error criteria result in less reduction
of the acoustic potential energy in the enclosure than the considered acoustic
error criteria. However, reductions are obtained, which are considerable for
frequencies up to around 500 Hz. This can more clearly be observed when the
responses are depicted in one-third octave bands, as shown in Figure 4.26(b).
Minimization of the vibrational response at the error sensor set on the radia-
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tion plate results in a better reduction of the acoustic potential energy than
minimization of the transmitted power. It must be noted that minimization
of the transmitted power also results in a global reduction (minimizes the
kinetic energy of the whole receiver structure) which is not the case for the
minimization of the error sensor set as was shown in section 4.6.1.

Active control of vibration differs from the reduction of the acoustic re-
sponse, and reduction of vibrational response does not necessarily imply a
reduction in the acoustic response. In the same way as noted for free field
radiation, it is also possible for the case of sound radiation into an enclosure
to weight the structural vibration sensors in such a way that a good estimate
of the pressure response of the cavity is obtained. More information on this
topic can be found in the literature, e.g. [19, 20, 21].

4.8 Concluding remarks

In this chapter an application of a hybrid isolation system was analyzed by
numerical studies on a laboratory setup. This laboratory setup was designed to
have certain properties similar to those of ships or large vehicles. A numerical
model of this laboratory setup was developed to investigate different actuator
and sensor configurations. Two types of error sensor criteria were considered:
error criteria related to the structural response of (a part of) the receiver
structure (AVC) and error criteria related to the acoustic response radiated
by a part of the receiver structure (ASAC). In contrast to the application
considered in chapter 2, it was demonstrated that the vibration transmission
from the source to the receiver structure has a multi-directional character
and that the dynamic response of the receiver structure was considered to
be realistic and consisting of a variety of modes (‘global’ and ‘local’ modes)
and a high modal density. The actuator and error sensor configurations were
considered in more detail.

First some concluding remarks concerning actuator configurations are pre-
sented:

• With a reduced set of actuators a good reduction of the receiver response
can be obtained. This can be explained using SVD analysis, which shows
that, although the disturbance is modeled as a multi-directional force,
just a few field shapes (preferable response patterns of the error sensors)
with corresponding source shapes (excitation patterns that couple well
with the corresponding field shapes) make a large contribution in the
response of the error sensor set.
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Figure 4.26: Acoustic potential energy in the enclosure for the passive situation and with
active control for minimization of the injected structural power, minimization of the error
sensor response on the radiation plate and minimization of the potential energy (a) and
the same response in terms of one-third octave bands (b).

• The actuators try to minimize the most efficient field shapes first. In-
creasing the number of actuators results in extra reduction of the error
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sensor response. The SVD analysis of the primary path showed that the
number of actuators is an indication of the number of participations of
field shapes that can be reduced. Increasing the number of actuators,
to a certain limit, also reduce the contributions of the first efficient field
shapes.

• An important consideration when designing hybrid isolation systems is,
besides the obtained reduction of the error sensor response, the actuator
effort needed to obtain reduction. The SVD analysis provides no direct
information about this topic. Increasing the number of actuators above
a certain number may still provide extra reduction of the error sensor
response, but may also result in a disproportional increase of the actu-
ator effort. This is caused by the fact that the ‘extra’ actuators try to
minimize the less efficient field shapes with low corresponding singular
values, and high actuator forces are needed to excite these field shapes.

• When a relatively large number of actuators is applied, weighting of
the actuator forces can be used as part of the control strategy to prevent
the actuator forces becoming disproportionally large to obtain reduction.
The actuators also try to minimize less efficient field shape contributions
which require relatively large actuator forces. This problem can be cir-
cumvented by weighting of the actuator effort. Although the weighting
procedure results in a decrease of the actuator effort, the reduction also
decreases and is comparable with the reduction obtained with a reduced
set of actuators. The optimum number of actuators is therefore a trade-
off between the obtained reduction and the actuator effort. To get an
indication of the number of actuators that form this best trade-off, the
information obtained with an SVD analysis is not sufficient. The active
sensor response has to be calculated for the chosen actuator configura-
tions with the different number of actuators and after that the actuator
effort or the reduction of the field shape contributions of the primary
transfer has to be considered. For the latter type of analysis, it can be
observed that increasing the number of actuators results in an increase
of the actuator effort whereas no extra reduction is obtained in the most
efficient field shapes.

• The SVD analysis of the secondary path provides information on the
most efficient actuator directions if no information on the source distur-
bance is available. This information is obtained by studying the contri-
bution of each actuator direction to the most dominant field shapes.

Next some concluding remarks concerning sensor configurations are presented:
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• Sensor responses (both acoustic and vibrational) at a distance from the
source can be reduced effectively with actuators near the source.

• The use of a global measure of the receiver response as error sensor
strategy for active isolation, like minimization of the kinetic energy or
the transmitted power, has the advantage that a global reduction of the
receiver response is obtained. This means that the largest reductions
are not obtained at certain parts of the receiver structure, but the active
response at other parts of the structure does not increase either. A
disadvantage is that this type of error criterion tries to minimize the
largest responses, which occur near the source of excitation. This is
often not desirable, because the largest reduction may be desired at
some distance away from the source, e.g. in the accommodations in a
ship rather than in the engine room. Another disadvantage of this type
of error criterion is the difficult implementation (in case of minimization
of the kinetic energy) or the large sensitivity to errors in the sensor
signals (in case of minimization of the transmitted power) [41]. This is
also shown in chapter 6 of this thesis. Although the minimization of the
error sensor set response results in a good reduction of this response, the
active response at other locations of the receiver structure may increase.

• Good reductions of acoustic cost functions can be established with active
isolation techniques. The structural error criteria perform less well in
terms of the active acoustic response (like the radiated sound power of a
part of the receiver structure or the acoustic potential energy). However,
reductions can still be obtained with the structural error criteria like the
minimization of the normal velocity response of the radiation plate. The
minimization of the transmitted power also results in a decrease of the
acoustic response at low frequencies.

• The performance achieved for active isolation with minimization of the
forces or velocities at the connection points of the mounting system
with the receiver structure is very poor. This is clearly different in
comparison to the active performance of the same error criteria on the
more simple isolation system considered in the previous chapter. The
multi-directional vibration transmission from the source to the receiver
structure in combination with a dynamically complex behavior of the
receiver structure makes the straightforward use of this kind of error
criteria not suited to obtain reductions away from the source.

The last remark, namely that straightforward minimization of the forces or
velocities at the junction of the receiver structure does not result in reductions
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at a distance from the source, has some negative implications. These kinds
of error criteria are much easier to implement, especially in the considered
applications. Besides that, it may also be possible to define error criteria near
the source that represent a global measure of the vibrational response, like
minimization of the transmitted power to the receiver structure. However, it
is known from the literature that this error criterion is ill-conditioned, meaning
that it is very sensitive to small errors in the measured sensor response. In
chapter 6 it is investigated if it is possible to improve the robustness of the
error criterion based on the minimization of the transmitted power. Also
an alternative concept of near-source error sensor strategies is presented and
investigated in more detail.



Chapter 5

Numerical modeling of
rubber isolators

5.1 Introduction

The hybrid isolation model presented in chapter 3 consisted of simplified rep-
resentation of hybrid mounts; namely a beam model to represent the passive
isolator in combination with an external force as a model for the actuator.
To apply hybrid isolation in practice, a hybrid module or mount has to be
designed. This component consists of an integration of passive vibration isola-
tors, actuators and, when near-source sensors are used, sensors. An important
issue for the design of such hybrid mounts is the number of actuators and the
actuator effort required to obtain reduction. The number of actuators must
be as small as possible for reasons of cost and robustness. Also, the actuator
effort needed to obtain a good active reduction must be as small as possible,
so relatively small and cheap actuators can be used. Besides that, the forces
that can be produced by commercial actuators are quite limited. Also the
generation of heat is a problem with large actuators and has to be minimized
to guarantee a stable and long-lasting functioning.

As explained in section 1.3, passive isolation is based on two attenuation
principles. The first and most important principle is isolation by creating a
stiffness or impedance mismatch between the source and the receiver. How-
ever, some minimum stiffness is required to restrict the static deformation and
low-frequency motion. These conflicting design requirements in combination
with the dynamic behavior of the isolators makes it necessary to consider the
behavior of the mounting system in more detail, e.g. by means of numerical
models. The second attenuation principle is based on the dissipation of energy.

123
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Structure-borne sound is dissipated in the mount by the internal damping of
the material. This is especially beneficial for the rigid body resonances of the
source on the mounting system. The vibration amplitudes at these resonance
frequencies can be quite large but can be subsequently damped by material
damping of the mounting system. This is important, because the rigid body
resonances occur in the lower frequency region and are often excited, e.g. with
the start-up and increase of the rotational speed of the rotating machinery.

The actuator effort and the number of actuators is inherently dependent
on the design of the passive part of the hybrid resilient mounting system. This
means that a passive isolation characterization is needed to design the active
isolation part of the hybrid mount. An important aspect is the identification
of the transfer paths which make the largest contribution to the structure-
borne sound transmission. These transfer paths will usually correspond with
stiff isolator directions and have a smaller dynamic impedance or stiffness
mismatch resulting in a worse isolation effect. However, for the concept of
hybrid isolation, the impedance mismatch can be enlarged in an active way
by locating the actuators in the dominant transfer paths. In order to obtain
a minimum number of actuators, the passive mounting system must also have
a minimum number of these dominant transfer paths. It was shown in chap-
ter 4 that all directions may play an important role in structure-borne sound
transmission. In the considered applications interesting for the application of
hybrid isolation, normally rubber vibration isolators are used.

This chapter deals with the modeling of rubber vibration isolators in order
to obtain a multi-directional characterization of the passive isolation behavior
as a part of the tool for the design of hybrid isolators. It will also be shown
that for obtaining reliable numerical results the material model of rubber is
very important. Rubber is a complex material and its material behavior is
often unknown. For this reason, attention is also paid to obtaining material
parameters for the numerical model with the use of measurement data of an
entire isolator.

5.1.1 Isolation characterization with numerical models

Although different kinds of materials can be used for the resilient isolators,
rubber is most popular. Natural rubber is very suited for isolation purposes,
because it can undergo large elastic deformations. Other advantages are the
high strength and abrasion resistance. In situations where high resistance
to oils, high temperatures, aging and ozone is needed, synthetic rubbers are
used. In most cases natural rubber is compounded with non-rubber ingredi-
ents to improve its strength, aging resistance and behavior during manufacture
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(a) (b) (c)

Figure 5.1: Examples of vibration isolators: the black parts are rubber, the white parts
indicate the metal components.

of the product [97]. The rubber isolators consist of vulcanized rubber with
firmly bonded metal parts. These metal parts facilitate the installation of the
isolator between the source and the receiver and distribute the load across
the rubber surfaces. In Figure 5.1 examples of rubber vibration isolators are
depicted. A consequence of the fact that rubber can undergo large elastic de-
formations is that the weight of the source causes a large (pre-)deformation of
the isolator. The shape of the mount changes considerably, which may have a
large influence on the (dynamic) behavior of the isolator. Models to determine
the isolation characteristics of rubber vibration isolators have been subject of
study in the literature. Dickens [30, 31] described a model based on a relation-
ship between the phase velocity in the rubber and the compression ratio due
to the static load. The results were compared with experiments and a satisfac-
tory agreement was obtained for the isolation behavior in the axial direction of
the isolators. Kim and Singh [70] studied the vibration transmission through
an elastomeric isolator with the Timoshenko beam theory. Besides the vi-
bration transmission due to flexural motion, the longitudinal motion was also
considered in [70]. The pre-deformation was not taken into account. Kari [66]
presented a linear waveguide model to model the axial dynamic stiffness in
the audible frequency range. The results agreed very well with experiments
on a rubber isolator, but the influence of the pre-deformation was not taken
into account.

As explained in chapter 1, the vibration transmission is a multi-directional
phenomenon and for this reason the isolation characteristics in all directions
of the vibration transmission of the isolator have to be taken into account.
The finite element method is suited for obtaining a multi-directional isolation
characterization [43, 44]. Other advantages are the ability to model complex
geometries, including pre-deformation, and that complex constitutive equa-
tions can be handled. Kari investigated the dynamic stiffness of preloaded
vibration isolators with the FEM method [67], but only in the axial direction.
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In the present work this analysis is extended to the dynamic stiffness com-
ponents in the other directions. The isolation characteristics are dependent
on many effects like the pre-deformation due to the weight of the source, the
excitation frequency, the temperature and aging. Only the dependence on the
pre-deformation and the frequency dependent dynamic effects are considered
here, because these effects have the largest influence.

First, the procedure is explained to determine the multi-directional isola-
tion characterization with numerical FEM models in section 5.2. After that,
the basics of the FEM theory are briefly described in section 5.3. Attention is
focused on the theory to model the material behavior of rubber. In section 5.4
an isolator that has been described extensively in the literature is studied as
a test case. The literature model only considers the isolation behavior in one
direction (i.e. the axial direction). The numerical model presented in this
chapter is also used to obtain the isolation characteristics in other directions.

5.1.2 Identification of material properties

The most influential factor for obtaining reliable numerical results is the ma-
terial definition used to describe rubber material. The material behavior of
rubber compounds is not easy to determine and often unknown. In practice,
the static material parameters are determined using simple standardized de-
formation experiments on samples of the rubber material. A commonly used
test for this purpose is the tensile test, where a standardized sample of the rub-
ber material is stretched until it breaks. The stress is measured as a function
of the strain for several tensile experiments. The static material parameters
are subsequently determined by a curve fit of the strain-energy function on
the measured stress-strain curve. This curve fit procedure is implemented in
some commercial FEM programs [52, 82]. The dynamic material behavior is
described by a frequency dependent complex shear modulus. The shear modu-
lus is measured in practice with a DMA or DMTA tester (Dynamic Mechanical
(Thermal) Analyzer) [83].

However, there are some difficulties in obtaining a good rubber material
characterization. The material properties of most rubber materials, in terms
that can be used for numerical analyses, are often not known or difficult to
obtain from rubber manufacturers. The material properties are also strongly
dependent on the conditions during the vulcanization process. In most prac-
tical situations only a finished product is available, which makes it difficult to
get test samples from the material without destroying the product. Another
restricting factor is that the frequency range of the DMA is limited (most DMA
instruments have a frequency limit of 200 Hz) which is in most cases too low for
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a characterization in the frequency range important for structure-borne sound.
The frequency range for the material specification can be increased with the
time-temperature superposition principle (TTS) as explained in section 5.3.2,
but this principle is not always valid for rubber compounds with a large filler
content. For this reason a procedure is described in section 5.5 to determine
the rubber material parameters by using measurements of an entire isolator.
Static deformation measurements are used to determine the rubber material
parameters related with the static behavior. Furthermore, dynamic measure-
ments are performed to determine the dynamic isolation characteristics in one
or some directions of the isolator. The material parameters of a numerical
model of the isolator are consequently updated in such a way that the differ-
ence between the measured and the calculated responses is minimized. With
the obtained static and dynamic material parameters, a complete description
of the isolation behavior (in all directions) of the isolator can be obtained with
the numerical model. First the procedure is described and tested with the an-
alyzed cylindrical vibration isolator studied extensively by Kari. After that,
the procedure is used to determine the unknown material properties with real
measurement data of a manufactured mount. The mount contains a silica-
reinforced rubber compound, which is a representative compound for engine
mounts.

Finally, some conclusions are drawn with respect to the numerical modeling
of rubber vibration isolators and identification of rubber material parameters
in section 5.6.

5.2 Isolation characterization and analysis

The procedure to determine the dynamic behavior of isolators can be split into
two parts as illustrated in Figure 5.2. First, the rubber isolator is preloaded
statically due to the weight of the source (step 1). This pre-deformation gen-
erally involves large deformations of the rubber material and it is assumed
that this load is applied for a sufficiently long time so that no viscous effects
are present. The effect of the pre-deformation is two-fold: the shape of the
isolator changes due to the large elastic deformations and the material behav-
ior changes due to the nonlinear behavior of the rubber material (the rubber
material behavior depends on the deformation of the material) [52]. Subse-
quently, the dynamic viscoelastic response around the pre-deformed elastic
state is determined with a harmonic analysis (step 2). A condition for this
approach is that the vibration amplitude is sufficiently small such that both
the kinematic and material response can be treated as linear perturbations
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around the pre-deformed state. This is normally the case for vibrations in the
frequency region of interest, i.e. structure-borne sound [104].

1 2

Figure 5.2: Analysis procedure for rubber vibration isolators: the first step is the calcu-
lation of the static pre-deformation (1) and the second step is the superposed harmonic
analysis (2).

The dynamic behavior of the mount is described by a field representation at
the junction at the top ¬ (connection with the source) and the bottom 

(connection with the receiver) of the mount, as depicted in Figure 5.3. This
type of description resembles the four-pole or two-port network description
[32, 87, 121], but is extended for the multi-directional vibration transmission
with six degrees of freedom at each junction. The single mounting is thus char-
acterized with a linear 12-port (six ports for all directions at each junction).
The dynamics of the vibration isolator is consequently described in terms of
the forces and velocities or displacements at the junctions:

f |1 = k11 · u|1 + k12 · u|2, (5.1)

f |2 = k21 · u|1 + k22 · u|2, (5.2)

where k11 and k22 are the blocked dynamic driving point stiffness matrices at
junctions 1 and 2, respectively, k12 and k21 are the blocked dynamic transfer
stiffness matrices at junctions 1 and 2, respectively, f |1 and f |2 are the 6-DOFs
force vectors at the junctions and u|1 and u|2 are the 6-DOFs displacement
vectors at the junctions. The term ‘blocked’ means that the corresponding
stiffness is valid when the harmonic displacement at one port is prescribed,
whereas the harmonic displacements at all other ports are constrained to zero
(i.e. blocked). The forces, displacements and stiffness matrices all depend on
the frequency. This type of representation is only valid for linear systems and
it is assumed that the attached plates at the top and bottom (firmly bonded
with the vulcanized rubber) behave as rigidly moving flanges. For multi-
mounting systems, the total structure-borne sound transfer is calculated by a
superposition of the single mounting contributions.

The measurement of the dynamic impedance or stiffness components of
vibration isolators is extensively studied in the literature. The components
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Figure 5.3: Vibration isolator with a field representation at top ¬ and bottom  with
the displacement vector in positive directions. The same convention is applied for the
force components.

of the stiffness matrices are measured by clamping all degrees of freedom at
one junction (e.g. by a blocking mass), whereas one degree of freedom is
prescribed at the other junction [122, 134]. The same strategy must be used
for the numerical model of the vibration isolator, by prescribing the harmonic
displacements at the flanges of the model. When for example the dynamic
displacement component u1|1 is prescribed (the displacement u1 at junction
¬), the six force components at the top junction and bottom junction can be
determined. In this way the first columns of the blocked dynamic stiffness
matrices k11 and k21 are determined. This process is repeated by prescribing
the frequency dependent displacement components at all 12 ports, and in this
way the complete dynamic stiffness matrix is obtained. Each dynamic stiffness
matrix contains 36 components, but some of the components are zero or equal
to each other when the isolator has some degree of symmetry. An overview
of independent stiffness components for common cases of symmetry applied
to typical mount shapes is presented by Verheij [134]. With the principle of
reciprocity it can be derived that k12 is equal to kT

21.

As explained before, the objective of a resilient mounting system is to
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introduce a large impedance or stiffness mismatch for an effective isolation
of the source from the receiver structure. If this is realized, then the driving
point stiffness of the receiver structure is much larger than the mount stiffness,
resulting in [134]:

f |2 ≈ k21 · u|1. (5.3)

This means that the force vector at the bottom side of the mount, which is
equal and opposite to the force vector acting on the receiver structure, is solely
determined by the blocked transfer stiffness of the isolator.

5.3 Numerical model of rubber isolators

5.3.1 Finite element modeling

To apply the FEM method for the passive characterization of rubber mounts,
more information is needed about the theory of the FEM method and the
material characterization. More detailed information about the theory behind
the modeling of rubber material with the help of FEM can be found in ap-
pendix E, where the kinematics and strain deformation definitions are briefly
described for rubbers. Subsequently, attention is paid to the material mod-
eling of the rubber. The elastic behavior of isotropic hyperelastic materials
is normally described by means of a strain energy function [5, 24, 97]. The
strain energy function determines the strain energy stored in the material per
unit of reference volume. For filled rubbers often the Yeoh model [143] is used,
which is a four-term polynomial fit of the strain energy function. This strain
energy function is given by:

U = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3 +

3∑

p=1

1

D1
(J − 1)2p , (5.4)

where the coefficients C10, C20, C30 and D1 are used to fit the material be-
havior on the standardized experiments on samples of the rubber materials.
More information can be found in appendix E. Rubber behaves nearly incom-
pressibly (i.e. the volume does not change much during deformation) and one
of the four terms is the bulk modulus to take account of this compressibility.
With the strain energy function and the strain definitions, a formulation of the
virtual work can be derived. A discretized form (in terms of finite elements)
of this virtual work formulation is solved in an iterative way. The virtual
work formulation describes briefly the theory behind the FEM code needed to
calculate the pre-deformation of the rubber vibration isolator.



5.3. Numerical model of rubber isolators 131

After the calculation of the pre-deformation, a frequency domain (or har-
monic) analysis is superimposed on the deformed state as explained in sec-
tion 5.2. The theory behind the harmonic analysis using FEM is described in
appendix E.4. The FEM formulation assumes that the frequency dependence
of the shear (deviatoric) and volumetric behaviors are independent. For the
harmonic analysis extra material parameters are required by the FEM package,
namely a dynamic shear storage modulus, a dynamic shear loss modulus and a
dynamic bulk modulus. In this work, the dynamic shear modulus is considered
to be dependent on the frequency only (see section 5.3.2) in the considered
frequency range relevant for structure-borne sound. The dynamic bulk modu-
lus is assumed to be frequency independent in the considered frequency range.
More details concerning the dynamic material behavior of rubber are given in
the next subsection.

5.3.2 Dynamic material behavior

Rubber has a visco-elastic material behavior and thus combines the viscous
properties of a liquid with the elastic properties of a solid material. The dy-
namic behavior is described by frequency dependent shear and loss moduli.
The modulus depends on many different factors such as the frequency, temper-
ature and vibration amplitude [78, 120]. The dynamic properties are altered
substantially by the addition of a filler, such as carbon black or silica. The
addition of the filler has a positive effect on the strength and other mechanical
properties, but also introduces nonlinear effects. Medalia [84] gives a good
overview of the influence of the frequency, amplitude and temperature effects
on the dynamic material properties of carbon black filled rubber vulcanizates.
A short overview of the nonlinear effects is given in this subsection.

Frequency dependence

The dynamic shear modulus of rubber exhibits strong frequency dependent be-
havior and three regions are distinguished with increasing frequency: a rubber
region, a transition region and a glassy region. A schematic characterization
of this frequency dependence with the three regions is shown in Figure 5.4.
The frequency regions for unfilled natural rubber at room temperature are
approximately 0 till 5000 Hz for the rubber region, 5000 till 109 Hz for the
transition region and 109 Hz and larger for the glassy region. The magni-
tude of the shear modulus increases with frequency and with the greatest rate
of change in the transition region. For frequencies larger than 109 Hz, the
rubber material behaves in a very brittle way. The loss factor increases with
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frequency in the rubber region, reaches a maximum in the transition region
and decreases in the glassy region.

In practice it is nearly impossible to measure the dynamic shear modu-
lus at such high frequencies. However, it is possible to determine the dynamic
characteristics at high frequencies by making use of the temperature-frequency
shift. This principle is based on the fact that the influence of the temperature
and frequency on the dynamic characteristic of rubber material are equiva-
lent. This is the so-called time-temperature superposition principle (TTS)
and means that the shear modulus of rubber at a certain reference tempera-
ture and excitation frequency is similar to that for the same rubber at lower
temperatures and with a lower excitation frequency. The relation between
the frequency and temperature dependence is described by an empirical shift
function, such as the William-Landel-Ferry (WLF) equation [37]. This rela-
tion is valid for so-called thermo-rheologically simple materials, behaving in a
linear way. For natural rubber with a large filler content, the behavior may
become strongly nonlinear, and the time-temperature superposition principle
may become invalid.

The frequency range for the structure-borne sound considered in this study
on hybrid isolation is low enough for the rubber to stay in the rubber region.
Sjöberg has studied the influence of the frequency on the dynamic character-
istics of vibration isolators with models and measurements [117]. A typical
phenomenon mentioned in his paper is that there is a jump in the dynamic
stiffness from the point of quasi-static behavior in the frequency region of 0.05
Hz to 1 Hz, followed by an increase of the dynamic stiffness with increasing
frequency. This effect is more pronounced when more filler is present in the
rubber compound and for low amplitude vibrations. This effect was observed
earlier, e.g. by Payne and Whittaker [104].

Temperature dependence

The dynamic shear modulus and loss factor also depend on the temperature
of the material. The temperature dependence of rubber is similar to the effect
of changing the vibration frequency and a schematic characterization is shown
in Figure 5.5. The material behavior can again be divided into three regions:
a glassy region at low temperatures with a relatively high magnitude of the
shear modulus, a transition region with a decreasing magnitude of the shear
modulus and a rubber region at high temperatures with a low shear modulus
magnitude. The shear modulus and loss factor only change slightly in the
rubber region. The transition region, denoted by the increase in stiffness or
shear modulus, starts at around -20 ◦C and at a temperature of -60 ◦C the
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Figure 5.4: Schematic representation of the frequency dependent behavior of rubber
material.

rubber is glass-like and brittle [78]. Kari and Sjöberg studied the effect of
the temperature on the dynamic stiffness of a rubber isolator with the help of
theoretical models [68].
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Figure 5.5: Schematic characteristics of rubber material temperature dependence.

Amplitude dependence

In contrast to unfilled rubbers, the dynamic shear modulus and loss factor of
filled rubbers depend on the vibration amplitude [122]. The filler particles,
consisting for example of particles carbon black or silica, are strongly bonded
to other primary particles and form so-called aggregates [97]. The aggregates
are weakly bonded to other aggregates and form agglomerates. These interac-
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tions between the different kinds of particles can be considered as friction-like
behavior and cause the complex nonlinear behavior of the filled rubber. There
are two well-known stress-softening effects that occur in filled vulcanized rub-
ber material, known as the Mullins effect and the Payne effect. The first effect
is seen when a previously unstrained rubber material is subjected to strain
cycles with a constant amplitude. The first few cycles show a decrease in peak
stress values. This is thought to be due to the rearrangement of the molecular
networks in the rubber itself and not due to filler interactions. This is the
reason why rubber isolators, before starting the measurements of the dynamic
properties, are ‘mechanically conditioned’ by subjecting the isolator to a few
large deformation cycles to eliminate the influence of this effect. The Payne
effect displays a larger shear modulus at small strain amplitudes than at larger
strain amplitudes. This effect is more pronounced when more filler is added
to the rubber compound. For small amplitudes, the filler structure remains
intact and the dynamic shear modulus is relatively large. When the amplitude
of the vibration increases, the filler structure breaks and the dynamic modu-
lus decreases. Also, the energy dissipation decreases, resulting in a lower loss
factor. Sjöberg and Kari have also studied the effect of the amplitude of the
vibration on the dynamic stiffness of rubber isolators with experiments and
models [117, 118, 119, 120].

Constitutive assumptions

The rubber material for passive vibration isolators in this work is assumed
to be isotropic, homogeneous, nearly incompressible and time invariant. The
material behavior of the rubber is confined to the isothermal rubber region
and the influence of glass hardening and low-temperature crystallization is not
considered. The influence of aging and dynamic amplitude dependence is also
ignored. The dynamic amplitude dependence can be ignored for filled rubbers
when the strain amplitudes are smaller than 0.1, as was shown by Payne [104].
For the analysis of the structure-borne sound transmission, the amplitudes are
in general sufficiently small, especially at higher frequencies.

5.4 Application: model of a cylindrical vibration
isolator

The modeling described in the previous section is applied to investigate the
dynamic behavior of a rubber mount. A rubber cylindrical mount, which has
been studied extensively in the literature by Kari [63], both with models (a
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waveguide model [66] and a FEM model [64, 67]) and experiments [65, 66, 67],
is studied numerically. The numerical results of the axial dynamic stiffness
are compared with the experimental results from the references as a check for
the developed procedure. In addition, the other directions are considered with
respect to the isolation behavior and structure-borne sound transmission [8,
98]. As stated before, the passive mounting system has multiple directions
in which structure-borne sound is transmitted to the receiver structure. For
a good characterization of the passive isolation behavior, all these directions
have to be taken into account.

5.4.1 Test object

The considered test object is a solid cylindrical compression molded rubber
isolator with a height of 50.0 mm and a radius of 50.0 mm. At the top and
bottom of the mount, cylindrical plates are bonded to the rubber part (the
flanges). The steel plates have a thickness of 2.6 mm. The principal ingredients
of the vulcanized natural rubber are given in Table 5.1. The ground-state
density of the rubber is 1050 kg/m3 and has a nominal hardness of 40◦ IRHD
(International Rubber Hardness Degree, which is an alternative to the Shore
A hardness measure). The material properties of the rubber compound used
for the simulations are shown in Table 5.2.

Material properties of the rubber

The rubber compound consists of natural rubber with a small amount of car-
bon black (10 parts per hundred rubber (phr)). For this kind of rubber, the
Yeoh model as given in equation (5.4) is suited to fit the strain-energy func-
tion for the FEM calculation. The values of the Yeoh constants fitted on
the measured static behavior of the rubber material are shown in Table 5.2.
The dynamic material properties, described by the frequency dependent mag-
nitude and loss factor of the shear modulus, are depicted in Figure 5.6(a)
and 5.6(b) respectively, and show the for natural rubber characteristic behav-
ior of a slightly increasing loss factor and magnitude of the shear modulus with
the frequency. Kari measured the dynamic modulus with a DMA analyzer [67].

5.4.2 Procedure and simulations

The considered test object is a cylindrical isolator, and due to symmetry the
number of independent dynamic stiffness components can be reduced consider-
ably. With the sign convention displayed in Figure 5.3, the cylindrical mount
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Category Ingredient Type
Concentration

(phr)

Polymer Natural rubber SMR CV50 100

Filler system Carbon black N772 10

Stabilizer system Anti-degradant
system

Anti-ozonant 1

Anti-oxidant 1
Waxe 1

Vulcanization
system

Activators Stearic acid 1

Zinc oxide 5
Vulcanizing agent Sulphur 3
Accelerator CBS 2

Special materials Processing oils Paraffinic 1
Aromatic 5

Table 5.1: Principal ingredients of the natural rubber compound of the studied
mount [67].

Parameter Value

Density ρ0 1050 kg/m3

Yeoh model:

C10 G∞/2 = 2.97 · 105 N/m2

C20 −4.5 · 104 N/m2

C30 1.5 · 104 N/m2

D1 2/k0 = 1.515 · 10−9 N/m2

Shear mod. :
G∞ 5.94 · 105 m2/N

Table 5.2: Material parameters used for the FEM model [67].

has a mirror plane perpendicular to the 3-axis and is axisymmetric around the
3-axis. The dynamic stiffness matrices (both the driving point and transfer
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Figure 5.6: Magnitude and loss factor of the shear modulus as a function of the fre-
quency [67].

stiffness matrices) have the following components:

kij =




kij(1, 1) 0 0 0 kij(1, 5) 0
0 kij(2, 2) 0 kij(2, 4) 0 0
0 0 kij(3, 3) 0 0 0
0 kij(4, 2) 0 kij(4, 4) 0 0

kij(5, 1) 0 0 0 kij(5, 5) 0
0 0 0 0 0 kij(6, 6)




i, j = 1, 2. (5.5)

Furthermore, some components within each stiffness matrix can be related to
each other due to symmetry. Some of the components for the blocked dynamic
driving point stiffness matrices k11 and k22 are related to each other according
to:

k11(1, 1) = k11(2, 2) = k22(1, 1) = k22(2, 2),

k11(3, 3) = k22(3, 3),

k11(4, 4) = k11(5, 5) = k22(4, 4) = k22(5, 5), (5.6)

k11(6, 6) = k22(6, 6),

k11(2, 4) = k11(4, 2) = −k11(1, 5) = −k11(5, 1) =

− k22(2, 4) = −k22(4, 2) = k22(1, 5) = k22(5, 1).
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In a similar way, some components of the two blocked dynamic transfer stiff-
ness matrices k21 and k12 are related to each other according to:

k21(1, 1) = k21(2, 2) = k12(1, 1) = k12(2, 2),

k21(3, 3) = k12(3, 3),

k21(4, 4) = k21(5, 5) = k12(4, 4) = k12(5, 5), (5.7)

k21(6, 6) = k12(6, 6),

k21(2, 4) = −k21(4, 2) = −k21(1, 5) = k21(5, 1) =

− k12(2, 4) = k12(4, 2) = k12(1, 5) = −k12(5, 1).

Due to the symmetry properties of the cylindrical mount, only four simu-
lations have to be performed for each pre-deformation as a function of fre-
quency. The four simulations needed for a complete dynamic description of
the considered isolator are shown schematically in Figure 5.7. The displace-
ment component u3|1 is prescribed to determine the axial dynamic stiffness
components (k11(3, 3) and k21(3, 3), see Figure 5.7(a)), u1|1 is prescribed to
determine the transverse dynamic stiffness components and the cross-coupling
between the transverse and rotational directions (k11(1, 1), k21(1, 1), k11(5, 1)
and k21(5, 1), see Figure 5.7(b)), u4|1 is prescribed to determine the rotational
dynamic stiffness components and the cross-coupling with the translational di-
rection (k11(4, 4), k21(4, 4), k11(2, 4) and k21(2, 4), see Figure 5.7(c)) and u6|1 is
prescribed to determine the torsional dynamic stiffness components (k11(6, 6)
and k21(6, 6), see Figure 5.7(d)).

u3|1

(a)

u1|1

(b)

u4|1

(c)

u6|1

(d)

Figure 5.7: Schematic pictures of the load cases for the harmonic FEM simulations to
determine the independent dynamic stiffness components.

Numerical FEM model

The simulations were performed with the commercial finite element pack-
age Abaqus. The mesh of the undeformed cylindrical vibration isolator is
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shown in Figure 5.8(a) and the mesh after a static pre-deformation is shown
in Figure 5.8(b). The bulging behavior is typical and due to the almost in-
compressible behavior of the rubber. The rubber material is meshed with
solid quadratic 20-node brick elements (type C3D20H). These elements use
a hybrid formulation to circumvent numerical problems due to the almost
incompressible behavior of the material [24]. The plates, bonded to the vul-
canized rubber at the top and the bottom side of the mounts are modeled
with quadratic 8-node shell elements (type S8R). It must be noted that, in
case of the determination of the axial dynamic transfer stiffness (kij(3, 3)), a
two-dimensional axisymmetric model can be used. However, for the determi-
nation of the stiffness components in the other directions, a three-dimensional
model is necessary.

(a) (b)

Figure 5.8: Mesh of the studied cylindrical vibration isolator in the undeformed situation
(a) and after pre-deformation (b).

5.4.3 Results

Static behavior

The first step in the analysis procedure is the static pre-deformation due to
the weight of the source. The pre-deformation is determined with a nonlinear
analysis in Abaqus because of the large elastic deformations. The static stiff-
ness is quite important because the mounting system has to support the source
and transmit the torque (in the case of an engine). The force-displacement
curve in the axial direction is depicted in Figure 5.9, and shows the force that
is needed to obtain the axial pre-deformation (indicated by upr). Further, it is
shown that the slope of the curve, which presents the compression stiffness of
the mount, increases gradually as a function of the pre-deformation. This is
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Figure 5.9: Force-displacement curve for the axial or longitudinal directions of the cylin-
drical isolator.

due to the change of material characteristics and due to the change of shape
of the mounts, which is taken into account in the nonlinear calculation. The
results agree very well with the static measurements in the literature [67].

Dynamic results

After the determination of the static pre-deformation, the dynamic stiffness
components are calculated. This is done for four different pre-deformations:
upr = 0, 3, 6 and 9 mm, corresponding with preloads of 0, 1410, 2980 and 4670
N respectively. The dynamic transfer stiffness components are determined
with the simulations as shown schematically in Figure 5.7. The transverse,
axial, moment and torsional dynamic transfer stiffness are shown in Fig-
ures 5.10(a) - 5.10(d). The cross-coupling terms k21(5, 1) and k21(2, 4), which
should be equal to each other as shown in equation (5.7), are both given in
Figures 5.11(a) and 5.11(b). The dynamic transfer stiffness is depicted as a
magnitude response (the graph at the top side of each subfigure) and a phase
plot (the graph at the bottom side of each subfigure).

Considering the dynamic transfer stiffness components in general, it can
be seen that the isolator behaves quasi-statically at low frequencies (for fre-
quencies < 200 Hz). The dynamic stiffness at low frequencies is equal to the
static stiffness. The tendency for the static stiffness to increase with increasing
pre-deformation can also be seen in Figure 5.10(b): the axial dynamic stiff-
ness at low frequencies is higher for a larger pre-deformation. The influence
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(b) Axial stiffness
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(c) Moment stiffness
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(d) Torsional stiffness
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Figure 5.10: Blocked dynamic transfer stiffness components as a function of frequency
and pre-deformation.

of the pre-deformation is especially considerable for the axial dynamic trans-
fer stiffness, and for the transverse stiffness at higher frequencies. When the
excitation frequency is increased, the inertial properties of the mount start to
play a role and wave effects occur in the rubber material. This dynamic be-



142 Numerical modeling of rubber isolators

0 200 400 600 800 1000
0

1

2

x 10
4

0 200 400 600 800 1000
−15

−10

−5

0

Frequency [Hz]

|k
2
1
(5
,1

)|
[N

m
/
m

]
∠
k
2
1
(5
,1

)
[r

a
d
]

(a)

0 200 400 600 800 1000
0

1

2

x 10
4

0 200 400 600 800 1000
−15

−10

−5

0

Frequency [Hz]
|k

2
1
(2
,4

)|
[N

/
ra

d
]

∠
k
2
1
(2
,4

)
[r

a
d
]

(b)
upr = 0 mm

upr = 3 mm

upr = 6 mm

upr = 9 mm

Figure 5.11: Cross-coupling components of the blocked dynamic transfer stiffness as a
function of frequency and pre-deformation.

havior has a large influence on the dynamic stiffness and thus on the isolation
characteristics of the mount. Considering the transverse, axial and torsional
stiffnesses, the quasi-static behavior at low frequency is followed by a strong
increase in dynamic stiffness as the frequency increases. This is due to the
occurrence of a wave and is also characterized by a phase shift of −π radians.
The wave effects start in the transverse and torsional directions at a frequency
of about 270 Hz. The increase is very pronounced, resulting in a dynamic
stiffness that is 20 times the static stiffness for the transverse and torsional
directions. Wave effects in the axial direction are observed at around 500
Hz and decrease with increasing pre-deformation. After the first increase in
the dynamic stiffness, the curve drops, after which it starts to rise again. As
the frequency increases, the wavelengths of the waves formed in the rubber
material become smaller. However, the introduction of wave effects cannot
be so clearly distinguished at higher frequencies. This is caused by the large
amount of damping, which also increases as a function of the frequency. The
large amount of damping is denoted by a flattening of the magnitude peaks
and a smoothing of the phase transitions. Considering the moment transfer
stiffness in Figure 5.10(c), a first rise of the stiffness occurs at around 270 Hz,
corresponding with the frequency where wave effects occur in transverse di-
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rection of the mount. The curve shows two more rises at 500 and 680 Hz. The
cross-coupling terms depicted in Figure 5.11 show a similar behavior as the
dynamic transverse stiffness, except for the influence of the pre-deformation.
The cross-coupling terms act as a good check of the procedure, and fulfill the
condition shown in equation (5.7): k21(2, 4) = k21(5, 1). The results for the
axial dynamic transfer stiffness agrees very well with the experimental results
found by Kari [67].
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Figure 5.12: Cross-coupling components of the blocked dynamic driving point stiffness
as a function of frequency and pre-deformation.

In Figures 5.12(a) and 5.12(b) both dynamic cross-coupling coefficients are
shown. Because of symmetry, these components should be equal to each other,
which is indeed observed. The other dynamic driving point stiffnesses, namely
the transverse, axial, moment and torsional driving point stiffness compo-
nents, are depicted in Figures 5.13(a) - 5.13(d). Except for the cross-coupling
components, the driving point responses are dominated by the plate mass
contributions in the largest part of the frequency range.

With the derived dynamic stiffness components, a complete characteri-
zation of the passive isolation behavior of the isolator is obtained. This is
important for the design of a hybrid mount, because an indication is obtained
of the contribution of the different structural transmission paths of the isola-
tor to the total injected structural power into the receiver structure. For the
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(b) Axial stiffness
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(c) Moment stiffness
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Figure 5.13: Blocked dynamic driving point stiffness components as a function of fre-
quency and pre-deformation.

isolator analyzed, it can be seen for example that the transverse dynamic stiff-
ness is dominant in comparison to the axial dynamic stiffness in the frequency
region from 230 till 300 Hz. This means that the transverse direction may
have the largest contribution of the transmitted power and for this reason the
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most dominant sound path. So, for an effective reduction of the structure-
borne sound transmission, it may be favorable to position the actuator in the
transverse direction in cases where the isolation needs to be improved in the
corresponding frequency range.

Wave effects

The wave effects have a considerable influence on the dynamic stiffness of the
isolators. Hence, the isolation characteristics vary considerably with respect
to the excitation frequency. To give an idea of what is actually happening in
the rubber material itself, several harmonic deformation shapes of an axisym-
metrical section of the rubber mount are shown in Figure 5.14. The pictures
show the real and imaginary contour plots of the longitudinal displacements
for simulations at different frequencies. The harmonic displacement at the top
of the isolator is prescribed as a linear perturbation around its static shape.
In this case the isolator has no pre-deformation. It is shown that at 100 Hz
the deformed shape resembles a static deformed shape. At 400 Hz the mass
behavior starts to play a role and a wave is introduced into the material, which
can be observed at the outside of the isolator (b). The influence of the mass
behavior is also observed by an increase of the dynamic stiffness as a result of
the wave effect. When the excitation frequency is increased even further, the
first wave is introduced at around 500 Hz (d). It can also be seen, that the
increase of the excitation frequency results in a decrease of the wavelength.
The reduction of the wavelength is clearly noticeable at the outside of the
isolator. Furthermore it can be seen that the waves are not synchronous and
the nodal lines (lines with zero longitudinal displacement) travel through the
material during one period.

5.5 Determination of the rubber material parame-
ters

The most important factor for a reliable numerical model is a good description
of the material behavior. As stated before, rubber behaves in a quite complex
way and it is not easy to obtain a good description of the material behavior.
For this reason a procedure is described to determine the rubber material para-
meters using measurements from an entire isolator. This is done by updating
the material parameters of a numerical model in such a way that the differ-
ence between the measured and the calculated responses is minimized. First,
the procedure is described and tested with the analyzed cylindrical vibration
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Figure 5.14: Contour plots of the longitudinal displacement on the deformed shape of
an axisymmetric part of the isolator without pre-deformation.
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isolator that was studied extensively by Kari. After that, the procedure is
used to determine the unknown material properties of a manufactured mount
with a silica-reinforced rubber compound representative for engine mounts.

5.5.1 Procedure

The procedure to obtain rubber material parameters with updating numerical
models is similar to the procedure described by Willes et al. [138, 139] and De
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Boer [29]. The procedure is subdivided into two stages: in the first stage the
material parameters to describe the static pre-deformation of the isolator are
determined and in the second stage, the dynamic material properties related
to the dynamic behavior of the isolator are determined [9]. An overview of
the procedure is given in appendix F.

The static material parameters, in the form of three Yeoh parameters
(when fully incompressible behavior is assumed: J = 1) which describe the
strain-energy function as shown in equation (5.4), are determined by means
of a static force-displacement measurement. This measurement can be carried
out with a uni-axial test setup. The isolator is loaded with different pre-
deformations at the top, after which the reaction force is measured. In this
way a force-displacement curve can be determined and the forces are assem-
bled in the vector fm. A numerical model is then composed of the considered
vibration isolator, and the reaction forces are calculated for the same set of
pre-deformations as used for the measurements. The static forces determined
with this numerical model are gathered in the vector fu, where the subscript
u indicates that this force vector is updated in the optimization procedure.
The Yeoh parameters are now determined with an iterative optimization pro-
cedure, where the numerical results are fitted on the experimental results by
minimizing the following quadratic objective function:

Js = (fm − fu)T · (fm − fu). (5.8)

When the updated force fu converges towards the measured force vector, a
minimum of the objective function is found and the obtained Yeoh parameters
describe the static force-displacement curve quite well.

After the determination of the Yeoh parameters, the dynamic material
properties are determined in the second stage. For the determination of these
material parameters, a dynamic transfer stiffness measurement for the rubber
isolator is needed as a function of frequency. In a similar way as was shown
in the first stage, the dynamic shear storage and loss modulus of a numerical
model are updated such that the difference between the updated numerically
determined dynamic stiffness and the experimentally measured dynamic stiff-
ness is minimized. This procedure is repeated for each frequency minimizing
the following quadratic objective function:

Jd = (ℜ(km) −ℜ(ku))2 + (ℑ(km) −ℑ(ku))2 , (5.9)

where km is the complex measured dynamic transfer stiffness and ku is the
complex numerical dynamic transfer stiffness that is updated. After conver-
gence for one frequency, an initial guess value of the dynamic shear modulus
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for the next frequency can be obtained by extrapolation of the values at the
current and previously determined frequencies. After determination of the
shear modulus for all frequencies, a complete material description is obtained
consisting of the Yeoh parameters and the complex frequency dependent dy-
namic modulus.

For the numerical simulations the finite element package Abaqus was used.
The optimization procedure was implemented in Matlab, where Abaqus was
invoked within each iteration. The optimization procedure used was a stan-
dard unconstrained nonlinear optimization procedure based on the simplex
method [49].

5.5.2 Validation

The identification method for the material parameters is validated for the nu-
merically determined static force-displacement graph and dynamic stiffness for
the cylindrical vibration isolator studied in section 5.4. The numerical exercise
is considered as a simulated ‘measurement’ to identify the material properties
of the rubber material used. The reconstructed material parameters are re-
quired to reproduce the static material properties shown in Table 5.2 and the
dynamic shear modulus shown in Figure 5.6. The numerical model updated to
determine the material properties, is a two-dimensional axisymmetric model
that can be used for this case because only the axial dynamic stiffness is con-
sidered. This is in fact the same model as used to visualize the wave effects in
the axial direction as shown in Figure 5.14.

In Figure 5.15(a) the numerically determined force-displacement curve is
shown (used as reference solution and ‘measurement’) together with the force-
displacement curve that corresponds to the material parameters identified.
For the update procedure, the rubber is considered to be incompressible and
only three Yeoh parameters have to be determined. The reconstructed force-
displacement results reproduce the reference solution very well. The Yeoh
parameters obtained corresponding with the updated result are shown in Ta-
ble 5.15(b). The coefficient C10 is estimated quite well, but some deviations
are present in the second and third coefficients C20 and C30. However, the
influence of the second and third coefficients on the total static response is
quite small.

After the determination of the static material parameters, the dynamic
shear modulus of the material can be obtained. In Figure 5.16(a) the refer-
ence axial dynamic stiffness and the axial stiffness obtained after the optimiza-
tion procedure are shown. Again, a good agreement is obtained between the
updated solution and the reference solution. In Figure 5.16(b) the dynamic
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Figure 5.15: Static force-displacement response and identified Yeoh material parameters
of the considered test case.

shear storage modulus obtained Gs and the dynamic shear loss modulus Gl

are shown as a function of frequency, together with the reference solution. A
good agreement is seen and therefore good material properties of the rubber
material are obtained.

5.5.3 Example: silica-reinforced isolator

The procedure is now applied on measured data for the rubber isolator shown
in Figure 5.17. The goal of this exercise is to demonstrate how the described
procedure works on actually measured data to determine the unknown mate-
rial properties. The rubber compound is a compound typically used in engine
mounts and has a much larger filler content than the cylindrical mount consid-
ered so far [28]. Instead of black carbon, silica is used as filler and due to the
relatively large filler content (50 phr), the isolator has a hardness of approxi-
mately 65 Shore A. This means that the rubber material itself is much stiffer
(a higher shear modulus) than the rubber of the mount analyzed by Kari and
described in the previous section. The ingredients of the rubber compound
are shown in Table 5.3. The mount was manufactured1 with a compression
moulding process and has a diameter of 62 mm and a height of 30 mm. The

1The mount was manufactured in the laboratory of the Rubber Technology group at the
University of Twente.
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Figure 5.16: The dynamic response (a) and dynamic material properties (b) as a function
of the frequency.

reference solution

updated solution

flanges at the top and bottom consist of two aluminium plates which are vul-
canized with the rubber and with a thickness of 2 mm. The density of the
rubber is 1200 kg/m3. More details about the isolator and its manufacture
can be found in [98].

Determination of the static material parameters

The force-displacement curve was measured with a uni-axial tester for differ-
ent pre-deformations. The uni-axial tester is shown in Figure 5.18 with the
preloaded isolator that can be recognized by its bulge shape. The measure-
ment results are shown in Figure 5.19(a), together with the force-displacement
curve obtained by the determination of the Yeoh parameters. As can be seen a
good fit of the measured curve is obtained with the material parameters shown
in Table 5.19(b). Although the isolator with the silica-reinforced rubber has
almost the same static stiffness as the rubber isolator considered by Kari, the
silica-reinforced rubber material itself behaves more stiffly than the rubber of
the mount of Kari. Again it can be seen that the mount behaves slightly more
stiffly for increasing pre-deformation.
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Figure 5.17: The analyzed rubber mount.

Category Ingredient Type
Concentration

(phr)

Polymer Natural rubber SIR 100

Filler system Silica Zeosil 1165MP 50

Coupling agent Silane Si-69 (TESPT) 5

Stabilizer system Anti-degradant
system

6-PPD 1

TMQ 0.5

Vulcanization
system

Activators Stearic acid 1

Zinc oxide 3
Vulcanizing agent Sulphur 0.3
Accelerator CBS 3
Accelerator DPG 1.5
Accelerator TMTD 0.5

Special materials Processing oils Aromatic 5

Table 5.3: Principal ingredients of the silica-reinforced natural rubber compound.

Determination of the dynamic material parameters

The transfer stiffness can be measured in two ways: a direct or indirect
method. The first uses a force transducer on the output side of the isolator,
while the latter uses a blocking mass. The measurement setup at TNO is based
on the indirect method [65, 134] and shown in Figure 5.20. The upper block is
excited in a certain direction, while the vibrations of other degrees of freedom
are suppressed. The lower block (the so-called blocking mass) restricts the
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movement of the bottom-side of the isolator and is placed on auxiliary mounts
to decouple the test object from the test rig frame. The blocking mass only
blocks the movements well for frequencies above the natural frequency of the
mass-spring system consisting of the blocking mass, the test isolator and the
auxiliary mounts. The motion of the upper mass is measured with acceleration
pickups. The blocking force is determined with the mass and the measured

Figure 5.18: The uni-axial tester with the preloaded silica-reinforced isolator.
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Figure 5.19: Static force-displacement response and identified Yeoh material parameters
of the considered silica-reinforced isolator.
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accelerations of the lower mass. In Figure 5.20 a photo and a diagram of the
measurement setup is shown, in the configuration for measuring the dynamic
transverse stiffness. This configuration uses two shakers: a primary shaker
to excite the top mass in the horizontal direction and a secondary shaker to
suppress the rotations of the upper mass by an active control system [136].
This control system drives the secondary shaker by minimizing the rotation
around the y-axis that is measured with the acceleration pickups 1 and 2.

upper mass

lower mass

1
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Figure 5.20: Photo and diagram of the measurement setup to determine the dynamic
transverse stiffness (laboratory setup at TNO). The acceleration pickups are numbered
from 1 to 6.
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The magnitude of the measured transverse stiffness of the isolator is shown
in Figure 5.21(b). The dynamic shear modulus were determined at seven
frequencies in the considered frequency range (200, 400, 600, 800, 1000, 1200
and 1400 Hz). The dynamic shear storage modulus (indicated by the ◦) and
the dynamic shear loss modulus (indicated by ×) found with the iterative
procedure are both shown in Figure 5.21(a). A representation of the shear
modulus over the whole frequency range is then obtained by a parabolic least-
squares curve fit through all these points. The calculated dynamic transverse
stiffness determined with the curve fit of the shear modulus is also plotted in
Figure 5.21(b). A good agreement between the measured and the simulated
results is found up to a frequency of 1000 Hz. At higher frequencies significant
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Figure 5.21: Determined dynamic storage modulus Gs (indicated by ◦) and loss modulus
Gl (indicated by ×) with the curve fits (a) and the measured and simulated dynamic
transverse stiffness (b) of the silica-reinforced vibration isolator.

deviations occur. The source of these high-frequency errors has not been
investigated.

The applied strain amplitudes in the measurements were very small, so the
influence of nonlinear effects due to interaction between the filler content and
the rubber molecules are assumed to be small. When the strain amplitudes
are large, these nonlinear effects play an important role. The physical way to
describe these interaction effects is by using friction models [68, 117, 118, 119,
120].

It can be concluded that the static material parameters can be estimated
in a robust way by fitting the Yeoh coefficients onto a static force-displacement
measurement. The procedure to determine the dynamic material parameters,
by fitting the dynamic shear modulus on a measured dynamic stiffness com-
ponent, seems to work. However, a good measurement of at least one dynamic
stiffness component is necessary.

5.6 Conclusions

Two procedures concerning the modeling of rubber vibration isolators have
been described in this chapter. First, a numerical method was presented to
determine the multi-directional dynamic stiffness matrix of rubber vibration
isolators. An important condition to obtain reliable numerical results is a
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correct material description of the rubber. This material description is often
unknown. For this reason, a procedure was also presented to determine the
rubber material properties by updating the numerically determined response
for a single direction with actual measurements of the complete isolator.

Numerical modeling of rubber vibration isolators to determine the passive
isolation behavior:
In practice, the actuators and the passive isolators are integrated, resulting
in a hybrid module. An important goal to be reached with the design of the
hybrid component is the use of a minimum number of actuators. The actua-
tors are in general placed in the dominant transfer paths (or stiff directions) of
the passive isolators. To reduce the number of actuators, the passive isolator
must also have a minimum number of dominant transfer paths. The direc-
tions of the passive isolator that have the largest dynamic stiffness in certain
frequency ranges is likely to be the most dominant structural transmission for
the structure-borne sound transmission. To determine the dominant transfer
paths with the goal of designing an integrated hybrid module, design analyses
of the passive isolators are needed and the passive isolation behavior must be
determined. For this reason, a procedure has been described to obtain the
multi-directional isolation characteristics of the passive isolator.

The passive isolation behavior depends on many factors, but in this work
only two effects were considered: the influence of a pre-deformation due to
the weight of the source and the influence of dynamic excitation. A nonlin-
ear calculation of the pre-deformation is performed first. The pre-deformation
causes a large elastic deformation of the isolator. After that, a linear harmonic
analysis is superimposed on the pre-deformed isolator, hereby assuming that
the dynamic amplitudes are sufficiently small to allow such a linear approach.
From the simulation results in terms of the dynamic stiffness it can be con-
cluded that the isolation behavior depends on both the frequency and the
pre-deformation. It was seen that the influence of the dynamic excitation is
more pronounced than the influence of the pre-deformation: the dynamic stiff-
ness may increase to up to 20 times the static stiffness for certain frequencies
and stiffness components. This implies that the isolation of structure-borne
sound for certain directions and at certain frequencies is much less than ex-
pected from the static stiffness. The dynamic excitation causes wave effects
in the isolator above a certain frequency because the inertial properties of the
rubber start to play an important role. This is observed as an increase in the
amplitude and a change of the phase of the dynamic stiffness.

The method presented in this work to determine the dynamic stiffness
matrices works well and provides sufficient information about the passive iso-
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lators. However, the performance of the hybrid isolator also depends on the
dynamics of the source, the receiver structure and the excitation. For this rea-
son, additional analyses must be performed. The dynamic stiffness matrices
obtained have to be implemented in the general model described in chapter 2.
With this kind of model, different hybrid components can be analyzed (like
the use of actuators in the stiff directions of the passive mounting system) for
several sensor configurations.

Identification of rubber material parameters:
Rubber is a complex material, in particular natural rubber compounds that
contain a large amount of filler. A procedure has been presented in this chap-
ter to determine the material parameters with the help of a limited number
of measurements at an entire vibration isolator: a static force-displacement
measurement to determine the static material parameters and one dynamic
transfer stiffness measurement to determine the dynamic material parameters.
The method was validated and after that applied on a silica-reinforced vibra-
tion isolator to investigate whether the procedure can be applied on actual
measured data. The method is robust for the determination of the static ma-
terial parameters. The procedure also seems to work for the determination of
the dynamic material parameters. However, the measurement of the dynamic
stiffness needs to be accurate in order to obtain a correct material description.
The obtained material parameters can consequently be used to determine a
complete isolation characterization of the isolator with the numerical model.

The procedure described works quite well for rubber compounds with a
small filler content and with small vibration amplitudes. For natural rubber
compounds with a relatively large amount of filler, a material description with
frequency dependent shear modulus cannot be used to describe the nonlinear
effects (frequency dependence like the ratio between the dynamic stiffness and
static stiffness and the amplitude dependence like the Payne effect) that occur
in this kind of rubber material. For this reason new material models have
to be developed when these nonlinear effects play an important role for the
isolation behavior.



Chapter 6

Further study on near-source
error sensor strategies

6.1 Introduction

In chapter 4 simulation results were presented of the numerical model of the
laboratory setup with error sensors at the locations where active reduction
is desired. For the considered applications of these isolation systems, e.g. a
ship, this means that the error sensors should be located in or near the ac-
commodations. The response at these sensor sets can be reduced efficiently
by a set of actuators as was shown with the numerical simulations. This type
of error sensor is referred to as a far-field sensor, i.e. a sensor that is situated
at locations where the response is desired to be minimized, mostly at some
distance from the source. In this chapter it is investigated whether it is possi-
ble to position sensors near the source of vibration (the so-called near-source
sensors) to obtain a global reduction or a far-field reduction. A schematic
overview of both the far-field and near-source sensor strategies was shown in
Figure 1.3. Some near-source sensor strategies were already investigated in
chapter 4, namely minimization of the velocities and the forces at the junc-
tions of the receiver structure. As can be seen in Figures 4.20(c) and 4.20(d),
these sensor strategies yield a poor reduction at the far-field sensor set. In
this chapter alternative near-source error sensor strategies are presented.

Positioning of the error sensors near the source has some advantages com-
pared to positioning the sensors in the accommodation:

• First of all, it is easier to implement near-source sensors in practical
applications. When the sensors are located in the passenger accommo-
dations, the implementation is more difficult due to for example the

157
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wiring from the sensors to the amplifiers and control system. The use
of near-source sensors results in a compact configuration; the actuators,
sensors and control system can be located close to each other. This
implies lower implementation costs.

• It is possible to define a global measure of the vibrational or acoustic
responses of the receiver structure. One concept has already been inves-
tigated in chapter 3, namely the minimization of the transmitted power.
It was also shown in chapter 4 that, when far-field sensors are used,
the actuators minimize the response at the sensor locations, but the re-
sponse at other far-field locations may even increase due to the influence
of the actuators. This means that a more global reduction can probably
be obtained with the far-field sensor concept by placing many sensors,
but at the expense of higher costs. Besides the increased number of
sensors, also the data acquisition increases and more amplifiers and a
more complex controller are needed. With the near-source error sensor
strategy it might be possible to define a global measure using a rela-
tively small number of sensors. It was shown that the number of sensors
for the near-source error sensor strategy based on minimization of the
transmitted power was determined by the number of DOFs involved in
the vibrational energy transmission from the mounting system to the
receiver structure.

• Using near-source sensors also has the advantage that the error sensor
response itself can be measured accurately. Far-field sensors are located
at a large distance from the source, and the error sensor signal may be
small due to the transmission attenuation in the receiver structure. This
means that noise may make a relatively large contribution to the total
error sensor response, which has a negative influence on the performance
of the active control system. This effect is smaller when near-source error
sensors are used.

• The near-source error sensors also measure some of the influence of flank-
ing paths (like the airborne noise from the engine), but measure in par-
ticular the structure-borne sound transmitted by the transfer path from
the engine through the passive mounting system to the receiver struc-
ture. This implies that other transfer paths may have no large influence
on the error response. When far-field sensors are used, it is more prob-
able that these sensors also measure contributions from other transfer
paths. It is difficult to reduce these contributions with the actuators and
this may even result in an increase of the vibrational or acoustic response
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at other locations than the error sensors. This results in a decrease of
the active performance.

6.1.1 Investigated near-source sensor strategies

Transmitted power

The first near-source error sensor strategy that is considered in this chapter
is the minimization of the transmitted power. This concept was already ana-
lyzed in chapters 3 and 4 and it was shown that it has the advantage that it
represents a global measure of the receiver response. It is shown in appendix A
that minimizing the transmitted power results in a minimization of the sum of
the potential and kinetic energy of the receiver structure. However, the near-
source sensor concept with minimization of the transmitted power is known to
be very sensitive to measurement errors [40, 41], in particular for light-weight
and stiff structures. These kinds of structures have low damping, resulting in
a low value of the transmitted power. Another disadvantage is that both the
forces and velocities at the connection points between the mounting system
and the receiver structure have to be measured. Furthermore, the number of
sensors is determined by the number of DOFs for the vibration transmission;
omitting one DOF in the sensor set will result in an increase of the transmitted
power in that direction due to power circulation. This effect was described
in section 3.4.1. In the present chapter, the concept of minimization of the
transmitted power will be considered in more detail. To circumvent the prob-
lem of using two types of sensors (force sensors and acceleration pickups), a
new concept is studied with sensors that measure the connection velocities or
forces only. The error sensor response is consequently weighted in such a way
that a measure for the transmitted power is obtained. The transmitted power
is an error sensor criterion that is known to be sensitive to measurement er-
rors. For this reason, attention is also paid to the robustness of this strategy
and the influence of regularization of the weighting matrix on the robustness.
The simulations are again performed on the numerical model of the laboratory
setup, the same model as used in chapter 4.

Near-source error sensor weighting

The error sensitivity of the transmitted power has stimulated the investigation
of alternative near-source error sensor strategies. It was shown in chapter 4
with the numerical model of the hybrid isolation setup, that good reductions
can be obtained with only four actuators. This was explained by the fact that
the major part of the sensor response was dominated by just four so-called
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field shapes. The four actuators are able to reduce the contributions of these
four field shapes effectively, resulting in a considerable decrease of the sensor
response. This indicates that a relatively small number of characteristic de-
formation patterns, the field shapes or field modes, contribute to the dynamic
response of the receiver structure. In chapter 4 it was also shown with simu-
lations on the numerical model of the laboratory setup, that sensor strategies
that minimize only the velocities or only the forces at the connection points
of the resilient mounting system with the receiver structure, result in a poor
reduction at the far-field sensor set. Because of these two observations, weight-
ing of a near-source error sensor set could be a good strategy. This weighting
procedure is based on a chosen far-field response, i.e. the response that is
desired to be minimized and for this reason called the performance response.
After determination of the weighting matrix, which relates the actual near-
source error sensor response to the far-field response, the far-field sensors are
no longer needed and only the near-source error sensors with their weighting
are implemented for the real-time control. The weighting matrix needs thus to
be determined with off-line experiments. This concept is similar to the use of
radiation modes in the field of ASAC. In that method the structural response
of a structure is measured and weighted with radiation modes in such a way
that a measure for the radiated sound power is obtained, and the controller
minimizes an acoustic quantity based on measured structural responses (see
e.g. [3, 11, 12, 42, 94]). The radiation modes are velocity patterns (or field
shapes) of the used structural sensor set that contribute independently to the
radiated sound power. In the low frequency region, only a small number of
these radiation modes is needed to obtain a good measure for the radiated
sound power. More details about this concept are given in appendix C.1. The
idea is to use a similar concept for hybrid isolation systems: weighting of a
near-source sensor set in such a way that a far-field sensor response (e.g. the
structural velocities or acoustic pressure responses near the location where
sound or vibration reduction is wanted, the accommodation for example) is
minimized.

Overview

Summarizing, in this chapter two near-source error sensor strategies are inves-
tigated:

• Minimizing the structural injected power into the receiver structure. The
concept of the use of a weighting matrix to reduce the type and number
of sensors is investigated for reasons of practical applicability.
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• Minimizing a weighted near-source error sensor set to obtain a reduction
at a far-field performance sensor set.

The near-source error sensor strategies are investigated on the numerical model
of the laboratory setup. It was shown in chapter 4, that this numerical model
has a dynamic behavior that is representative for the considered applications
of hybrid isolation. For this reason, the conclusions drawn from this case study
are also assumed to be valid for the considered type of application.

In this chapter first the transmitted power is analyzed in section 6.2. The
theory is presented to determine a measure for the transmitted power by
weighting of the measured forces or velocities at the junctions of the receiver
structure. Also the robustness of this weighted error criterion is investigated.
The influence of regularization of the weighting matrix on the robustness is
investigated. The alternative near-source sensor strategy based on the weight-
ing of the near-source error sensor response with a far-field sensor response,
is presented in section 6.3. Also, an error analysis is performed to investigate
the robustness of this near-source sensor strategy. It will be shown that the
latter near-source sensor strategy is more robust for measurement errors in the
weighting matrix than the error criterion of the transmitted power. For this
reason, the near-source sensor strategy with a weighting matrix based on a
chosen far-field sensor response is analyzed in section 6.4 with measured FRFs
on the actual laboratory setup. This is done to check the applicability of the
derived near-source error sensor strategy on an actual representative setup.
Finally, conclusions are drawn in section 6.5.

6.2 Near-source error sensor weighting based on trans-
mitted power

6.2.1 Transmitted power determined with a weighting matrix

The power P through a general multi-point interface between the mounting
system and receiver is given by (frequency domain notation):

P =
1

2
fH
r · vr, (6.1)

where fr is the multi-point and multi-directional force vector acting on the
receiver structure and vr is the vector with velocities at the same DOFs. The
real part of the power is considered here and represents the dissipated, active
or transmitted power:

Pt =
1

2
ℜ
(
fH
r · vr

)
. (6.2)
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The imaginary part of P represents the reactive power. The relation between
the forces and velocities at the junction points between the mounting system
and the receiver structure can be written in terms of a mobility matrix or an
impedance matrix (see also equation (2.21)) according to:

vr = Yr · fr, (6.3a)

fr = Zr · vr. (6.3b)

With the help of equations (6.3a) and (6.3b) the transmitted power can be
expressed in terms of the junction forces or velocities as:

Pt =
1

2

(
fH
r · ℜ (Yr) · fr

)
, (6.4a)

Pt =
1

2

(
vH

r · ℜ (Zr) · vr

)
. (6.4b)

Using the set of equations (2.32), the transmitted power can be rewritten
in the well-known Hermitian quadratic form in terms of the actuator forces.
For the transmitted power measured in terms of the connection velocities this
quadratic expression can be written as:

Pt =
1

2

(
vH

r · ℜ (Zr) · vr

)
(6.5)

= fH
a · A · fa + fH

a · b + bH · fa + c, (6.6)

where A, b and c are defined respectively as:

A =
1

2

(
HvrH

s · ℜ (Zr) · Hvr
s

)
, (6.7a)

b =
1

2

(
HvrH

s · ℜ (Zr) · Hvr
p · fd

)
, (6.7b)

c =
1

2

(
fd · HvrH

p · ℜ (Zr) · Hvr
p · fd

)
. (6.7c)

The optimal actuator force to minimize the transmitted power is now calcu-
lated by:

fopt
a = −A−1 · b. (6.8)

The optimal actuator force that minimizes the transmitted power with a mo-
bility matrix to weight the forces, as given in equation (6.4a), is determined
in a similar way with equation (2.32b).

Using equation (6.4a), the transmitted power can be determined by mea-
suring the connection forces at the junctions and weighting of this error sensor
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response with the real part of the local mobility matrix Yr. Another option
is to measure the connection velocities and use the real part of the local im-
pedance matrix Zr as weighting matrix (i.e. using equation (6.4b)). The
advantage of the first concept is that the weighting matrix is a mobility ma-
trix that can be measured directly. The disadvantage of this concept is that
the forces acting on the receiver structure have to be measured, which is dif-
ficult to implement in practice. For the second concept, simple acceleration
pickups can be used, but the weighting matrix is an impedance matrix. The
impedance matrix cannot be measured directly, so the inverse of the local
mobility matrix is needed:

Pt =
1

2

(
vH

r · ℜ
(
Y−1

r

)
· vr

)
. (6.9)

This inversion is often ill-conditioned, and as a consequence small measure-
ment errors have a large influence on the active performance.

6.2.2 Power modes

The weighting matrices ℜ (Yr) and ℜ (Zr) as shown in equations (6.4a) and
(6.4b), respectively, have some characteristic properties. The matrices are
square and positive definite. The latter property can easily be verified because
the transmitted power is always larger than zero for each source-generated
nonzero velocity or force vector for structures with a certain amount of damp-
ing. Furthermore, the matrices are symmetric due to reciprocity. The singular
value decomposition (SVD) of these matrices also has some characteristic prop-
erties: the left singular and right singular vectors are equal to each other and
are also equal to the eigenvectors of the matrix. The singular values and the
eigenvalues are also equal to each other and are real and nonnegative. The
eigenvalue decomposition of the weighting matrices can be written as:

ℜ (Yr) = ΨY · ΛY · ΨT
Y , (6.10a)

ℜ (Zr) = ΨZ · ΛZ · ΨT
Z , (6.10b)

where ΛY and ΛZ are the real diagonal matrices with the nonnegative eigen-
values of ℜ (Yr) and ℜ (Zr), respectively, ΨY and ΨZ are the orthogonal
matrices composed of the corresponding eigenvectors, so that ΨY · ΨT

Y =
ΨT

Y · ΨY = I and ΨZ · ΨT
Z = ΨT

Z · ΨZ = I. The eigenvalues are arranged in



164 Further study on near-source error sensor strategies

descending order. The transmitted power can now be written as:

Pt =
1

2
fH
r · ΨY · ΛY · ΨT

Y · fr

=
1

2
qfH · ΛY · qf

=
1

2

N∑

n=1

λYn |qf
n|2, (6.11a)

Pt =
1

2
vH

r · ΨZ · ΛZ · ΨT
Z · vr

=
1

2
qvH · ΛZ · qv

=
1

2

N∑

n=1

λZn |qv
n|2, (6.11b)

where qf = ΨT
Y · fr and qv

n = ΨT
Z · vr. The symbols λYn and λZn repre-

sent the nth eigenvalues of ℜ (Yr) and ℜ (Zr), respectively. Considering equa-
tion (6.11a), the vibrational power transmitted to the receiver by N forces can
be regarded as the power transmitted by N independent contributions, where
N is the number of DOFs involved in the vibration transmission. These inde-
pendent contributions are the so-called power modes, and qf is the so-called
power mode force vector, by analogy of the radiation modes technique (see
also appendix C.1). This concept was first suggested by Moorhouse et al. [88]
and later extended to the multi-point vibration transmission by Jianxin et
al. [62]. This technique was also used by Ji et al. [60, 61] to predict the vi-
brational power transmission . The same technique can be applied when the
transmitted power is expressed in terms of the junction velocities as shown
in equation (6.11b). The first approach in terms of the junction forces will
be referred to as the power force mode approach and the second approach in
terms of the junction velocities will be referred to as the power velocity mode
approach. The theory of the power modes is used in this work to investigate
the possibility of defining a robust error criterion in terms of the transmitted
power.

The idea is to first measure the frequency dependent weighting matrix
(the real part of the mobility or impedance matrix) off-line, after which it is
applied in the control system to obtain a measure for the transmitted power.
However, the local mobility or impedance weighting matrix is ill-conditioned.
This means that small measurement errors in these weighting matrices result
in an unreliable prediction of the transmitted power. There are different regu-
larization techniques to obtain a better conditioned matrix for a more reliable
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measure of the transmitted power. One of these techniques is the Truncated
Singular Value Decomposition (TSVD) technique, in which one or more of
the smaller singular values are put to zero. This is explained in more detail
in appendix C.2. The TSVD technique is applied in the following study to
the weighting matrices and is the same as regularization in terms of power
modes. First it is investigated whether it is possible to reduce the weighting
matrix. As shown in equations (6.11a) and (6.11b), it is possible to reduce
the amount of information by determining the weighting matrix with a re-
duced set eigenvectors and eigenvalues. These equations also show that each
power force mode or power velocity mode contributes independently in the
transmitted vibrational power, and that each mode contribution is positive,
meaning that for a reduced weighting matrix an underestimation of the real
transmitted power is obtained. The transmitted power can consequently be
approximated by:

Pt ≈
k∑

n=1

λn|qf
n|2

=
1

2
fH
r · Ψ̂Y · Λ̂Y · Ψ̂T

Y · fr

=
1

2
fH
r · ℜ̂(Yr) · fr, (6.12a)

Pt ≈
k∑

n=1

λn|qv
n|2

=
1

2
vH

r · Ψ̂Z · Λ̂Z · Ψ̂T

Z · vr

=
1

2
vH

r · ℜ̂(Zr) · vr, (6.12b)

where k is a reduced number of eigenvectors and eigenvalues taken into account

(k < N) and the symbol (̂.) indicates that a regularized or reduced formulation
is used.

The theory of the power modes is illustrated with simulations on the nu-
merical model of the laboratory setup. This model was extensively described
in chapter 4 and the configuration used for the simulations is shown in Fig-
ure 4.8. The disturbance force set consists of a set of unit translational forces
and moments in each degree of freedom at the top of each mount and that are
in phase with each other. The actuator set consists of four actuators that can
exert forces in the normal direction of the foundation plate and located at the
junctions between the mounting system and the receiver structure.
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In Figure 6.1(a) the first four eigenvalues of the weighting matrix ℜ (Yr)
are plotted as a function of frequency. It is shown that the decay in the values
is quite large, which implies that a good estimation of the weighting matrix can
be obtained when just a few eigenvalues and corresponding eigenvectors are
taken into account. This is confirmed by the results presented in Figure 6.1(b);
a good representation of the passive transmitted vibrational power is obtained
at most frequencies when the weighting matrix is reconstructed by taking
account of only four eigenvalues and eigenvectors. When eight eigenvectors
are taken into account, a good estimation of the transmitted power is obtained
across the whole frequency region.

The same analysis is performed for the power velocity mode approach. The
first four eigenvalues of the weighting matrix ℜ (Zr) are shown in Figure 6.2(a)
as a function of the frequency. In contrast to the eigenvalues of the real
part of the mobility matrix, the difference between the eigenvalues of the
impedance matrix is not so large, especially in the low frequency region. At
higher frequencies, the first eigenvalue is clearly the largest, but the difference
between the higher eigenvalues is still small. When the passive transmitted
power is calculated for eight eigenvalues, large deviations are distinguished
as shown in Figure 6.2(b). Even when twenty singular values are taken into
account, still relatively large discrepancies are present at some frequencies.
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Figure 6.1: The four larger eigenvalues of ℜ (Yr) (a) and the passive transmitted power
when respectively 4 and 8 eigenvalues (e.v.) are taken into account for the weighting
matrix (b).

The next step is to investigate whether the reduced formulation of the weight-
ing matrix can also be used as an error criterion for active isolation. The power
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Figure 6.2: The four larger eigenvalues of ℜ (Zr) = ℜ
(
Y−1

r

)
(a) and the passive trans-

mitted power when respectively 8 and 20 eigenvalues (e.v.) are taken into account for
the weighting matrix (b).

force mode approach is considered first as shown in equation (6.12a). It was
seen that a good estimation of the passive transmitted power was obtained
with a reduced weighting matrix composed of four eigenvectors. In Figure 6.3
the active response is shown in terms of the reduction of the transmitted power
Pt when the force error sensor response is weighted with the reduced weight-
ing mobility matrix. Notice that the reduction is plotted; a negative value
means an increase in the transmitted power. When the weighting matrix is
reduced by retaining only four eigenvectors, the reductions obtained are very
poor, and in fact an increase in the transmitted power is observed at several
frequencies. When the weighting mobility matrix is reduced by retaining eight
eigenvectors, the reductions obtained are similar to the optimal solution when
the transmitted power itself is reduced. This means that the weighting matrix
can be reduced considerably when it is used as an error criterion for active iso-
lation. A similar analysis is performed for the power velocity mode approach
as described by equation (6.12b). A reduced formulation of the weighting im-
pedance matrix to describe the passive transmitted power was not so effective
as for the weighting mobility matrix of the power force mode approach. It was
seen that still around twenty eigenvectors are needed for a correct descrip-
tion of the transmitted power. The performance of the error criterion with a
reduced formulation of the weighting impedance matrix is also investigated,
and the results are shown in Figure 6.4 for eight and for twenty eigenvectors.
The performance of the weighting matrix determined with eight eigenvectors
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is poor, the reduction obtained by taking into account twenty eigenvectors is
similar to the optimal solution. This means that some reduction of the weight-
ing matrix is possible for the power velocity method, but reduction appears
not to be as effective as for the power force method because a relatively large
number of eigenvalues has to be taken into account for a good description of
the transmitted power.
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Figure 6.3: Reduction of the active transmitted vibrational power in dB when 4 and 8
eigenvalues (e.v.) and eigenvectors are taken into account to reconstruct the weighting
matrix ℜ (Yr).

6.2.3 Error sensitivity of the power weighting matrices

First the influence of measurement errors on the power force mode approach
is considered, after which the robustness of the power velocity mode approach
is analyzed. As stated before, the weighting mobility matrices are measured
off-line. During these FRF measurements it is inevitable that small errors
are introduced on the measured responses. The influence of small errors in
the off-line measured weighting matrix on the active isolation performance is
investigated by adding errors upon the ‘true’ numerically determined velocity
responses. The off-line measurement procedure is simulated by adding small
numerically determined ‘measurement’ errors on the velocity responses. In
practice, errors will also occur at the input sensor (the force sensor), but these
are not taken into account here. The introduction of measurement errors
on the measured response is described in more detail in appendix G. The
amplitude of the error signal is chosen to be 3 % of the frequency averaged



6.2. Near-source error sensor weighting based on transmitted power 169

magnitude of the FRF.
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Figure 6.4: Reduction of the active transmitted vibrational power in dB when 8 and 20
eigenvalues (e.v.) and eigenvectors are taken into account to reconstruct the weighting
matrix ℜ (Zr).
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Figure 6.5: Introduction of measurement errors on the mobility matrix used for weighting:
corrupted mobility component (a) and the passive transmitted power with the corrupted
weighting matrix (b).
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Figure 6.6: The transmitted vibrational power when the transmitted power is minimized
for the uncorrupted case and with use of a corrupted weighting mobility matrix.

Robustness of the power force mode approach

The influence of the measurement errors on the real part of one component of
the measured mobilities is shown in Figure 6.5(a), where in the upper part the
error on the response (the difference in dB between the true and corrupted
response) and in the lower part both the true and corrupted mobilities are
shown. The mobility considered is the (3, 3) component of the mobility matrix
ℜ (Yr) and relates the force in the normal direction to the velocity in the
normal direction of the foundation plate at the junction of mount 1 (see also
Figure 4.8). It is stressed that the errors are introduced on both the real and
imaginary parts of the mobility, after which the real part is taken to determine
the structural transmitted power. For most components of the considered
weighting matrix, the amplitude of the real part is smaller than the imaginary
part, implying that the error on the real part is relatively larger. Especially
in the frequency region where the value of the measured mobility is low, the
errors introduced are large (e.g. the frequency region from 0 till 100 Hz). In
this way, all 24 components of the weighting matrix are corrupted, and the
corrupted transmitted power is consequently given by:

P
˜ t = fH

r · Y
˜ r · fr, (6.13)

where the symbol (.)
˜

indicates a corrupted FRF matrix. The influence of

the corrupted mobility matrix on the passive transmitted power is shown in
Figure 6.5(b). The errors in the transmitted power varies from several dB up
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to 10 dB at frequencies where the value of the transmitted power is relatively
low.

The influence of the corrupted weighting matrix on the active performance
of the error criterion is shown in Figure 6.6. The performance of the active
isolation is very poor and in fact even increases in the active response are
observed in comparison with the passive response. This means that the con-
sidered error criterion is very sensitive to errors in the weighting matrix. The
considered weighting matrix is especially sensitive to measurement errors be-
cause the real part of the mobility matrix has a relatively small contribution
to the total magnitude of the response.

It was shown in section 6.2.2 that a good representation of the weight-
ing matrix is obtained when the matrix is reconstructed with a reduced set
of singular values and singular vectors. This TSVD technique is also often
applied for the regularization of ill-conditioned matrices for the inversion. To
determine the optimal actuator force, an inversion is determined and also an
inversion of the weighting matrix is needed. This is shown in equation (6.8).
The TSVD technique is applied on the weighting matrix ℜ(Y

˜ r), to obtain the
reconstructed matrix:

ℜ̂(Y
˜ r) =

k∑

i

(
ui · vH

i

)
si, (6.14)

where ui, vi and si are respectively the singular vectors and values of the
mobility matrix ℜ(Y

˜ r). The truncation number k is based on the definition
of a threshold, meaning that singular values that are smaller than this thresh-
old are rejected. Simulations have been performed with different thresholds
to reject singular values, but the TSVD regularization did not result in a
better performance in comparison with the active results obtained with the
unregularized weighting matrix.

It can be concluded that the transmitted power can be predicted well by
measuring the junction forces and weighting with a mobility matrix. However,
this error criterion is still very sensitive to measurement errors in the off-
line determined weighting matrix, even after regularization using power force
modes.

Robustness of the power velocity mode approach

The power velocity mode approach has the advantage that simple acceleration
pickups can be used. These sensors can be much more easily applied in practice
than the force sensors that are needed for the power force method. Force
transducers must be placed in the transfer path, whereas this is not required
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for the accelerometers. However, the error sensor signal has to be weighted
with an impedance matrix. The impedance matrix must be determined by an
inversion of the measured mobility matrix as was shown in equation (6.9). This
inversion is ill-conditioned, meaning that the error criterion is sensitive to small
measurement errors. In Figure 6.7(a) the corrupted impedance component
is depicted, obtained after inversion of the mobility. It is shown that the
inversion enlarges the error on the transfer function. Also the error on the
passive transmitted power determined with the corrupted weighting matrix,
as shown in Figure 6.7(b), contains larger errors compared to the power force
method. The increase in the error is caused by the ill-conditioned behavior
of the mobility matrix. The small errors of the components of the mobility
matrix are enlarged during inversion. In Figure 6.8 the passive transmitted
power is shown when the mobility matrix is regularized before inversion. The
TSVD technique is again used for the regularization of the mobility matrix:

ℜ
(
Ẑ
˜r

)
= ℜ

(
Ŷ
˜
−1
r

)
= ℜ

(
k∑

i

vi · uH
i

si

)
, (6.15)

where ui, vi and si are the frequency dependent singular vectors and value
respectively of the mobility matrix Y

˜ r. The regularization is analyzed by sim-
ulations with different thresholds for which the singular values are discarded.
The regularization results in a better prediction of the transmitted power.
However, the regularized weighting matrix is not good enough for the purpose
of active isolation to obtain reductions in the transmitted power. This can
clearly be seen in Figure 6.9. The reductions in transmitted power decrease
substantially and at several frequencies even an increase of the transmitted
power in comparison with the passive transmitted power is observed.

From the simulation results described in this section, it can be concluded
that the transmitted power is very sensitive to measurement errors in the
weighting matrices. Regularization of the weighting matrix does not improve
the results. This means that the practical application of this near-source
error criterion with the use of an off-line determined weighting matrix is very
difficult for the considered applications of hybrid isolation.

It can be concluded that the transmitted power can be well predicted by
measuring the junction velocities and weighting with an impedance matrix.
However, this error criterion is also very sensitive to measurement errors in
the off-line determined weighting matrix. Regularization of the measured off-
line mobility matrix before inversion improves the results, but the robustness
is still poor.
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Figure 6.7: Introduction of measurement errors on the impedance matrix used for weight-
ing: corrupted impedance component (a) and the passive transmitted power with the
corrupted weighting matrix (b).
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Figure 6.8: Passive transmitted power without corruption (true) and with the corrupted
and regularized weighting impedance matrix.

6.3 Near-source error sensor weighting based on a
far-field response

Besides the approach based on the minimization of the transmitted power as
described in the previous section, an alternative method can also be used.
This method is based on the weighting of near-source error sensor signals
with the use of sensor responses at locations where reduction is desired [6,



174 Further study on near-source error sensor strategies

0 200 400 600 800 1000
−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

P
t

[d
B

re
1

W
]

min. vH
r · ℜ (Ẑer
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Figure 6.9: The transmitted vibrational power when the transmitted power is minimized
for the uncorrupted case and for a corrupted weighting impedance matrix after regular-
ization.

133]. The idea is to locate a set of sensors at a certain distance of the source
of vibration for example in the accommodations of the ship: the far-field
sensor set. This sensor set is considered as the performance sensor set and
represents the actual response that is desired to be minimized. The far-field
sensor set can consist of e.g. pressure microphones or accelerometers in the
passenger accommodations. Besides the far-field sensor set, a near-source
sensor set is attached to the receiver structure. The near-source sensor set
is also used as the error sensor set for the real-time active control. With the
help of FRF measurements, a weighting matrix is derived which can be used
to weight the near-source error sensor response in such a way that a good
measure for the far-field sensor response is obtained. The weighting matrix
is determined off-line and implemented in the controller to weight the real-
time near-source error sensor response. The far-field sensors are only used
for the off-line determination of the weighting matrix and are not part of
the actual control system. The weighted near-source error sensors in fact
‘virtually’ measure the far-field sensor response when the near-source error
sensors are weighted according to the described procedure.

Considering the numerical model of the laboratory setup, it was shown in
section 4.5 that with a relatively small number of actuators a large reduction
of the (rather local) far-field sensor response was obtained. This means that
only a few field shapes dominate the far-field sensor response and can thus be
effectively reduced with a reduced number of actuators. When the contribu-
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Figure 6.10: Responses at different characteristic parts of the numerical model of the
laboratory setup.

tions of these field shapes at the far-field sensor response can be related to a
near-source sensor response, it might be possible to obtain a relatively robust
near-source measure. In this section a procedure is introduced to determine
such a weighting matrix. An important issue is the robustness of this type of
near-source sensor strategy, because the power mode approach failed as near-
source sensor strategy at this point. The simulations are again performed with
the same numerical model of the laboratory setup as used in chapter 4.

6.3.1 Weighting of the near-source error sensors

The first step is to describe a procedure to determine the appropriate weighting
matrix for the near-source error sensor set that forms a representative measure
for the far-field performance sensor response. The dynamic behavior of the
complete hybrid isolation system can be represented in terms of one mobility
matrix:





vd

va

vns

vfs

vc





=




Ydd Yda Ydns Ydfs Ydc

Yad Yaa Yans Yafs Yac

Ynsd Ynsa Ynsns Ynsfs Ynsc

Yfsd Yfsa Yfsns Yfsfs Yfsc

Ycd Yca Ycns Ycfs Ycc



·





fd
fa
fns

ffs

fc




, (6.16)
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where vd and fd are the velocities and forces at the upper side of the mounts,
va and fa are the velocities and forces at the actuator positions, vns and fns

are the velocities and forces at the near-source sensor locations, vfs and ffs

are the velocities and forces at the far-field sensor locations and vc and fc are
the velocities and forces at the remaining locations on the receiver structure.
The different velocity responses and force excitations of the laboratory setup
are also schematically depicted in Figure 6.10. When it is assumed that only
disturbance forces are present at the top of the mounting system and actuator
forces at the connection points of the mounts with the receiver structure, the
response at the near-source and far-field sensor sets can be written respectively
as: {

vns

vfs

}
=

[
Ynsd Ynsa

Yfsd Yfsa

]
·
{
fd
fa

}
. (6.17)

The disturbance and actuator force vectors fd and fa can be combined into
one force vector fda:

vns = Ynsda · fda, (6.18a)

vfs = Yfsda · fda. (6.18b)

Method 1

The equations (6.18) can be used to express the far-field sensors in terms of
the near-source sensors. The first equation can be rewritten to express the
disturbance forces and actuator forces in terms of the near-source error sensor
response according to:

fda = Y+
nsda · vns, (6.19)

where the symbol (.)+ indicates the pseudo-inverse. With this equation and
the equation for the far-field response (6.18b), the far-field sensor response can
be written as function of the near-source sensor response according to:

vfs = Yfsda · Y+
nsda · vns = Wv · vns, (6.20)

where Wv is the weighting matrix of the near-source error sensor response.
Considering the pseudo-inverse of the mobility matrix Ynsda, the number of
near-source sensors must be at least equal to the sum of the number of in-
dependent excitation forces (or the number of mounts times the number of
degrees of freedom per mount) and the number of actuator forces. In the
situation that the number of near-source sensors is less than the sum of the
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number of disturbance and actuator forces, the pseudo-inverse of an under-
determined matrix Ynsda is calculated. This means that the weighting matrix
is not reliable for weighting the near-source sensors to represent the far-field re-
sponse due to ill-conditioning. Equation (6.20) can be written as a Hermitian
quadratic cost function J according to:

J = vH
fs · vfs = vH

ns · WH
v · Wv · vns

= vH
ns · W · vns

= fH
a · A · fa + fH

a · b + bH · fa + c, (6.21)

where W is the quadratic expression in terms of the weighting matrix Wv.
This method is denoted as method 1 to express the far-field sensor response in
terms of the near-source error sensor response, to distinguish it from the two
alternative methods discussed in section 6.3.2. The expressions for the matrix
A, the vector b and the scalar c are shown in the first column of Table 6.1. The
optimal actuator force that minimizes this Hermitian quadratic cost function
can be calculated as described by equation (6.8).

actuator

disturbance

far-field sensor

side plate

foundation
plate

radiation
plate

Figure 6.11: Numerical model of the isolation setup with the considered disturbance and
actuator configuration and far-field sensor set 1.

The suggested method for the determination of the weighting matrix is ap-
plied to the numerical model of the laboratory setup with the disturbance
and actuator configuration as shown in Figure 6.11. Two far-field sensor sets
are considered: a far-field sensor set with 25 normal velocity sensors on the



178 Further study on near-source error sensor strategies

radiation plate as shown in Figure 6.11 and a far-field sensor set with 46 nor-
mal velocity sensors on the side plate and 25 normal velocity sensors on the
radiation plate as shown in Figure 6.12. The latter sensor set with a total of
71 normal velocity sensors, represents a more global measure of the receiver
response and is indicated as the second far-field sensor set 2, whereas the far-
field sensor set 1 is the same sensor set as used in chapter 4. The weighting
matrices for these two considered far-field sensor sets are determined using
equation (6.20):

W1 = W1H

v · W1
v =

(
Y1

fsda · Y+
nsda

)H ·
(
Y1

fsda · Y+
nsda

)
, (6.22a)

W2 = W2H

v · W2
v =

(
Y2

fsda · Y+
nsda

)H ·
(
Y2

fsda · Y+
nsda

)
, (6.22b)

where Y1
fsda and Y2

fsda are the combined FRFs of the disturbance and actuator
forces to the far-field sensor sets 1 and 2, respectively. In Figure 6.13(a) the far-
field response 1 is shown when the weighted near-source error sensor response
is minimized, and when the response at the considered far-field sensor set is
directly minimized. The near-source sensor set is also shown in this figure and
consists of the junction velocities at the connection points of the mounts with
the receiver structure (24 sensors) and four additional sensors at the corners
of the foundation plate. This means a total number of 28 near-source sensors,
implying that the matrix Ynsda is determined and square. The performance
of the near-source weighting strategy is the same as the optimal result, namely
minimization of the far-field sensor response itself. The same conclusion can
be drawn for far-field sensor set 2 as shown in Figure 6.13(b). This implies
that also a rather global measure of the receiver response can be obtained with
the weighting of a relatively small near-source sensor set.

6.3.2 Reduction of the number of near-source sensors

For the determination of the weighting matrix described in equation (6.20) and
denoted by method 1, both the primary and secondary FRFs are used. The
term primary indicates the FRFs from the disturbance forces to the sensors
and secondary indicates the FRFs from the actuator forces to the sensors. It
is also possible to determine a weighting matrix based on the primary FRFs
only [132]. In that case, the number of near-source sensors can be smaller
to have a square near-source mobility matrix. An alternative method to de-
termine this weighting matrix is explained below. This weighting matrix is
used for two alternative ways of weighted near-source error sensor strategies,
denoted by method 2 and method 3 respectively.
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Figure 6.12: Numerical model of the isolation setup with the far-field sensor set 2.

Method 2

The far-field response in equation (6.17) can be expressed as:

vfs =
(
−Yfsd · Y+

nsd · Ynsa + Yfsa

)
· fa + Yfsd · Y+

nsd · vns. (6.23)

In equation (6.23) the far-field sensor response is expressed in a term depending
on the actuator forces and a term containing a weighted near-source velocity
vector. The weighting matrix is shown to be:

Wd
v = Yfsd · Y+

nsd . (6.24)

For the SISO case (single input and single output, meaning only one sensor
and only one actuator) with just one disturbance force component, it can be
seen that the first term at the right-hand side of equation (6.23) reduces to
zero. For a MIMO system (multiple sensors and actuators) with multiple
independent disturbance excitations this is not so straightforward. Taking
a closer look at the influence of the actuator force vector in equation (6.23)
results in the following consideration:

−Yfsd · Y+
nsd︸ ︷︷ ︸

Wd
v

·Ynsa · fa︸ ︷︷ ︸
va

ns

︸ ︷︷ ︸
≈−va

fs
?

+Yfsa · fa︸ ︷︷ ︸
va

fs

, (6.25)
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Figure 6.13: Active response at the far-field sensor sets 1 and 2 with minimization of
the depicted near-source sensor response weighted with the weighting matrices that are
determined with both the primary and secondary FRFs (method 1).

where va
ns denotes the near-source sensor response due to the actuator forces

and va
fs denotes the far-field sensor response due to the actuator forces. The

question mark indicates that the far-field response due to the actuator forces
is only determined correctly when the inversion of mobility matrix Ynsd can
be determined in a correct way. This means that the mobility matrix must
be square or overdetermined and not ill-conditioned for a reliable inversion.
Hence, the number of near-source sensors must be at least equal to the number
of disturbance forces, or in general at least equal to the number of mounts times
6. When this condition is fulfilled, the first term of equation (6.25) reduces to
zero and the far-field sensor response only depends on the near-field response:

vfs = Wd
v · vns = Yfsd · Y+

nsd · vns . (6.26)

This expression for the active response at the far-field sensor set can be writ-
ten again in a Hermitian quadratic form in a similar way as shown in equa-
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tion (6.21):

J = vH
fs · vfs = vH

ns · WdH

v · Wd
v · vns

= vH
ns · Wd · vns

= fH
a · A · fa + fH

a · b + bH · fa + c. (6.27)

The components of the Hermitian quadratic error criterion are shown in the
second column of Table 6.1 under method 2. The only difference between
this method and method 1 is the weighting matrix: method 2 only uses the
primary FRFs for the determination of the weighting matrix. The optimal
actuator force that minimizes this quadratic cost function can be determined
by equation (6.8). For the numerical model, this means that for a square
or overdetermined mobility matrix Ynsd at least 24 near-source sensors are
needed (number of mounts times the size of the disturbance force vector).
This means for the considered numerical model of the laboratory setup that
24 error sensors are needed. That is four error sensors less than the near-source
error sensor strategy with a weighting matrix based on both the primary and
secondary FRFs of method 1. This method to determine the weighting ma-
trix is applied on the numerical model of the laboratory setup. In Figure 6.14
the responses at the two considered far-field sensor sets are shown for the
weighted near-source sensor strategy and where the weighting matrix is based
on the primary transfers only, as shown in equation (6.24). The four sensors at
the corners of the foundation plate are thus omitted to reduce the number of
near-source sensors in comparison with the near-source error sensor strategy
considered in the previous subsection. The figures show that minimization of
the near-source error sensor response weighted with Wd

v yields the same re-
ductions at both considered far-field sensor sets as minimization of the far-field
sensor responses themselves. This concept, with the advantage that the num-
ber of near-source error sensors decreases with the number of actuators, works
well for the considered near-source sensor configurations. The robustness of
method 2 is investigated in the next subsection.

Method 3

An important disadvantage of method 2 is that it only works when the condi-
tion in equation (6.25) is fulfilled. This implies that the actuator forces must
have no influence on the far-field sensor response after weighting of the near-
source error sensor response with the weighting matrix Wd

v. This appears to
be the case for the considered laboratory setup. However, this condition is not
necessarily fulfilled in other situations. The influence of the actuators on the



182 Further study on near-source error sensor strategies

foundation
plate

near-source
sensor

0 200 400 600 800 1000
−80

−70

−60

−50

−40

−30

−20

−10

Frequency [Hz]

v
H f

s
·
v

f
s
1

[d
B

re
1

m
2
/
s2

]

passive

min. vH
fs · vfs 1

min. vH
ns · W

d
1 · vns

(a) far-field sensor set 1

0 200 400 600 800 1000
−70

−60

−50

−40

−30

−20

−10

Frequency [Hz]

v
H f

s
·
v

f
s
2

[d
B

re
1

m
2
/
s2

]

passive

min. vH
fs · vfs 2

min. vH
ns · W

d
2 · vns

(b) far-field sensor set 2

Figure 6.14: Active response at the far-field sensor sets 1 and 2 with minimization of the
depicted near-source sensor set weighted with the weighting matrices that are determined
with the primary FRFs only (method 2).

near-source error response can be reduced by the error sensor strategy intro-
duced by Berkhoff [13]. After that, the weighting matrix determined with the
primary FRFs only can be applied as shown in equation (6.24). This leads
to a third method for using near-source error sensors. The first step is to
determine the near-source error sensor signal:

vns = Ynsd · fd + Ynsa · fa . (6.28)

The near-source error sensor response is subsequently corrected for the actu-
ator influence. This is done by subtracting the influence of the actuator with
an off-line determined secondary FRF Ynsa from equation (6.28) resulting in:

vd
ns = vns − Ynsa · fa = Ynsd · fd . (6.29)

The remaining near-source sensor response, indicated by vd
ns, is then only de-

termined by the disturbance forces. This residual near-source sensor response
is consequently weighted, resulting in the far-field response determined by the
disturbance forces only:

vd
fs = Wd

v · vd
ns = Wd

v · Ynsd · fd . (6.30)
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Method 1 Method 2 Method 3

Wv Wv = Yfsda · Y+

nsda Wd
v = Yfsd · Y+

nsd Wd
v = Yfsd · Y+

nsd

A YH
nsa · W · Ynsa YH

nsa · Wd · Ynsa YH
fsa · Yfsa

b YH
nsa · W · Ynsd · fd YH

nsa · Wd · Ynsd · fd YH
fsa · Wd

v · Ynsd · fd
c fH

d · YH
nsd · W · Ynsd · fd fH

d · YH
nsd · Wd · Ynsd · fd fH

d · YH
nsd · Wd · Ynsd · fd

Table 6.1: The components of the error criterion for the three methods of near-source
error sensor weighting based on a far-field sensor response.

The influence of the actuators on the far-field sensor response is taken into
account by an off-line determined secondary mobility matrix Yfsa:

vfs = Wd
v · Ynsd · fd + Yfsa · fa . (6.31)

This expression can again be written in the standard Hermitian quadratic
form according to:

J = vH
fs · vfs =

(
Wd

v · Ynsd · fd + Yfsa · fa
)H

·
(
Wd

v · Ynsd · fd + Yfsa · fa
)

= fH
a · A · fa + fH

a · b + bH · fa + c. (6.32)

The components of this Hermitian quadratic error criterion, namely the matrix
A, the vector b and the scalar c are shown in the third column of Table 6.1
under method 3. The disadvantage of this method with respect to method
2 is that extra off-line measurements have to be performed to determine the
secondary path mobility matrices Yfsa and Ynsa. This approach also results
in the same reductions for the weighted near-source sensors as minimization
of the far-field sensor sets directly.

Three methods are now available to obtain a weighted near-source error
sensor strategy in such a way that a measure for the far-field sensor response
is obtained.

• Method 1 uses off-line measured FRFs of the disturbance forces and
actuator forces to the far-field sensor set and near-source error sensor
set.

• Method 2 uses only off-line measured FRFs from the disturbance forces
to the far-field and near-source sensor sets.
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• Method 3 is a modification of method 2 by making use of off-line mea-
sured FRFs from the actuators to both sensor sets in order to determine
the near-source error response due to the disturbance forces only.

An overview of the three methods is shown in Table 6.1. All three methods
were shown to work well in the error-free numerical model of the laboratory
setup. The next step is to investigate the robustness of the three methods
when small corruptions are present in the weighting matrices.

6.3.3 Error sensitivity of the near-source error sensor strate-
gies

Method 1

The FRFs needed for the weighting matrices have to be determined by off-
line measurements and are inherently corrupted by measurement errors. The
robustness of the near-source error sensor strategies considered in this subsec-
tion is investigated by applying small ‘measurement’ errors to these off-line
determined FRFs. The numerical model of the laboratory setup is again used
to investigate the robustness of the near-source error sensor strategies. The
method to corrupt these FRFs is explained in appendix G. A corrupted matrix
is denoted by the symbol (.)

˜
. The error percentage of the FRFs to determine

the weighting matrix is assumed to be 6 % of the magnitude of each FRF for
the presented simulation results in this subsection. The weighting matrix can
be determined with the corrupted mobility matrices according to:

W
˜v = Y

˜ fsda · Y˜
+
nsda. (6.33)

The weighted passive far-field sensor response at far-field sensor set 1 (vH
ns ·

W
˜1 · vns) and at far-field sensor set 2 (vH

ns · W
˜2 · vns) with the corrupted

weighting matrices are shown in Figure 6.15. It is shown that the errors
in the weighting matrices result in considerable errors in the passive far-field
response, especially at frequencies where the far-field response has a low value.

The next step is to consider the active isolation performance. The active
far-field sensor response is depicted in Figure 6.16 for both far-field sensor sets
with minimization of the error sensor strategy as shown in equation (6.21),
but with a corrupted weighting matrix as described by equation (6.33). The
components of the Hermitian quadratic error criterion are shown in Table 6.2
(method 1). Considering the active response at far-field sensor set 1, the per-
formance decreases considerably. However, large reductions are still obtained
in the far-field response, namely reductions larger than 10 dB at many fre-
quencies. It can also be seen that the active response does not exceed the



6.3. Near-source error sensor weighting based on a far-field response 185

passive response. The unstable behavior for small measurement errors in the
weighting matrices as was shown for the power mode approach does not occur
for this type of near-source error sensor strategy. It must be stressed that the
FRFs for determination of the weighting matrices are corrupted twice as much
(6 %) as the weighting matrices for the power mode approach (3 %).

The reductions at far-field sensor set 2 are also less than for the optimal
solution. However, far-field sensor set 2 represents a more global measure of
the dynamic response of the receiver structure, and is more robust for mea-
surement errors. This is concluded from the fact that the difference between
the far-field response obtained with the weighting strategy and the optimal
reduction of the far-field response is less than for far-field sensor set 1.
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Figure 6.15: Passive response and the error of the passive response after weighting the
near-source sensor set with the corrupted weighting matrix that is determined with the
use of both the primary and secondary FRFs at far-field sensor set 1 (a) and at far-field
sensor set 2 (b), respectively.

Method 2

The weighting matrix determined by the primary FRFs only, as shown in
equation (6.24), is corrupted in a similar way to investigate the robustness
and can be determined by:

W
˜

d
v = Y

˜ fsd · Y˜
+
nsd . (6.34)

The passive far-field responses are shown in Figure 6.17, when the passive near-
source sensor response is weighted with the corrupted weighting matrices W

˜
d
1
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Figure 6.16: Active response for the near-source sensor strategy, with the corrupted
weighting matrices that are determined using both the primary and secondary FRFs at
far-field sensor set 1 (a) and at far-field sensor set 2 (b) respectively (method 1).

and W
˜

d
2 for far-field sensor set 1 and 2, respectively. The error in dB between

the passive weighted near-source response and the true far-field response is
shown in the upper part of the figure. The errors introduced are similar to
the case where the weighting matrix is determined with a combination of
primary and secondary FRFs as shown in Figure 6.15. The weighted error
sensor response can again be written in the Hermitian quadratic form with
the components shown in Table 6.2 (method 2). The active responses at both
far-field sensor sets are depicted in Figure 6.18. The near-source error sensor
strategy with a weighting matrix with far-field sensor set 2 as performance
sensor set, is a little more robust with respect to errors in the weighting matrix.

Methods 3 en 4

It was shown that another method to implement the weighting matrix W
˜

d
v is

realized by correcting the near-source error sensor response for the actuator
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Figure 6.17: Passive response after weighting the near-source sensor set with the cor-
rupted weighting matrix that is determined with the use of the primary FRFs only at
far-field sensor set 1 (a) and at far-field sensor 2 (b), respectively.

influence, as introduced by Berkhoff. The near-source error sensor response is
determined by:

vns = Ynsd · fd + Ynsa · fa . (6.35)

The first step is to subtract the actuator influence on the near-source error
sensor response:

vd
ns = Ynsd · fd + Ynsa · fa − Y

˜ nsa · fa , (6.36)

where Y
˜ nsa is the off-line determined secondary mobility matrix describing

the transfer from the actuator forces to the near-source error sensors. This
matrix contains small measurement errors and is therefore not equal to the
true secondary mobility matrix Ynsa. For this reason the actuator influence
on the near-source error response is not completely eliminated. The next
step is to weight this near-source error response with the off-line determined
weighting matrix W

˜
d
v to obtain the far-field response due to the influence of

the disturbance only:

vd
fs = W

˜
d
v · vd

ns = W
˜

d
v ·
(
Ynsd · fd +

(
Ynsa − Y

˜ nsa

)
· fa
)
. (6.37)

The better the off-line measured mobility Y
˜ nsa matches the true mobility

Ynsa, the better the far-field sensor response vd
fs due to the disturbance forces

only is determined. The influence of the actuators on the far-field sensor
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Figure 6.18: Active response for the near-source sensor strategy with the corrupted
weighting matrices that are determined with the use of the primary FRFs only at far-field
sensor set 1 (a) and at far-field sensor set 2 (b), respectively (method 2).

response is taken into account by an off-line determined secondary mobility
matrix Y

˜ fsa:

vfs = W
˜

d
v ·
(
Ynsd · fd +

(
Ynsa − Y

˜ nsa

)
· fa
)

+ Y
˜ fsa · fa. (6.38)

This expression can again be written in the standard Hermitian quadratic form
with the components shown in Table 6.2 (method 3). The optimal actuator
force vector that is determined in this way differs from the actuator force
vector that is determined with the uncorrupted FRFs shown in Table 6.1 under
method 3. In the ideal case it is thus assumed that the off-line measured FRFs
Y
˜ nsa and Y

˜ fsa are equal to the true FRFs. In Figure 6.19 the active far-field
sensor responses are shown when the actuator forces are determined with the
corrupted weighting matrices and corrupted secondary FRFs. It is shown that
the reductions obtained in this way are similar in magnitude compared to the
reductions obtained with the straightforward use of the weighting matrix Wd

of method 2 as shown in Figure 6.18.
For the results presented in Figure 6.19 it was assumed that all the off-line
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Figure 6.19: Active response for the near-source sensor strategy with the corrupted
weighting matrices determined with the use of the primary FRFs only at far-field sensor
set 1 (a) and at far-field sensor set 2 (b) and with the use of off-line measured secondary
FRFs to obtain the far-field response (method 3).

measured FRFs have the same magnitude of corruption. This is realistic for
the FRFs from the disturbance and actuator forces to the far-field sensors, be-
cause these transfer matrices are measured off-line. However, the near-source
error sensors are attached to the structure and used as error sensors for the
real-time controller. This allows a frequent update of the measured secondary
path, because the actuators and error sensors are part of the real-time con-
troller and for this reason ready to be used. Actually, this measurement must
also be performed to implement the filtered-x LMS algorithm that is commonly
used for this kind of feedforward active control problems [96]. For this rea-
son simulation results are presented for a perfect estimation of this secondary
transfer and therefore it is assumed that Y

˜ nsa = Ynsa. The coefficients of
the actuator forces for the Hermitian quadratic error criterion are shown in
Table 6.2 (method 4).

The active far-field sensor responses for this near-source error sensor strat-
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Figure 6.20: Active response for the near-source sensor strategy with the corrupted
weighting matrices determined with the use of the primary FRFs only at far-field sensor
set 1 (a) and at far-field sensor set 2 (b) and with the use of off-line measured secondary
FRFs to obtain the far-field response and a perfect estimated FRF Ynsa (method 4).

egy are shown in Figure 6.20. Two tendencies are observed in the depicted
active responses. First of all, the strategy is less robust at lower frequencies
compared to the other near-source sensor strategies considered in this subsec-
tion. This behavior is observed by the larger peaks in the active response in
the frequency range of 0 up to 300 Hz. The second tendency that is observed is
that the obtained reductions of the far-field velocities are larger in the higher
frequency range of 600 up to 1000 Hz.

6.3.4 Regularization

For the determination of the weighting matrix a (pseudo)-inverse is needed,
which can cause problems when the matrix is ill-conditioned. In this subsec-
tion two regularization techniques are considered: TSVD and using additional
near-source sensors. The regularization techniques are used to obtain a more
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Method 1 Method 2

W
˜v W

˜v = Y
˜ fsda · Y˜

+
nsda W

˜
d
v = Y

˜ fsd · Y˜
+
nsd

A YH
nsa · W

˜
· Ynsa YH

nsa · W
˜

d · Ynsa

b YH
nsa · W

˜
· Ynsd · fd YH

nsa · W
˜

d · Ynsd · fd
c fH

d · YH
nsd · W

˜
· Ynsd · fd fH

d · YH
nsd · W

˜
d · Ynsd · fd

Method 3 Method 4

W
˜v W

˜
d
v = Y

˜ fsd · Y˜
+
nsd W

˜
d
v = Y

˜ fsd · Y˜
+
nsd

A

(
Y
˜

H
fsa +

(
Ynsa − Y

˜ nsa

)H · W
˜

dH

v

)
· Y

˜
H
fsa · Y

˜ fsa(
W
˜

d
v ·
(
Ynsa − Y

˜ nsa

)
+ Y
˜ fsa

)

b

(
Y
˜

H
fsa +

(
Ynsa − Y

˜ nsa

)H · W
˜

dH

v

)
· Y

˜
H
fsa · W

˜
d
v · Ynsd · fd

W
˜

d
v · Ynsd · fd

c fH
d · YH

nsd · W
˜

d · Ynsd · fd fH
d · YH

nsd · W
˜

d · Ynsd · fd

Table 6.2: The components of the error criterion for the four methods of near-source error
sensor weighting based on a far-field sensor response with corrupted weighting matrices.
Method 1 is based on the weighting matrix determined with both primary and secondary
FRFs and method 2 with a weighting matrix determined with primary FRFs only. Method
3 uses the same weighting matrix as method 2, but has a correction for the actuator
influence. Method 4 is the same method as 3, but for and ideal off-line estimation of the
secondary mobility matrix from the actuators to the near-source error sensors.

reliable inverse of the mobility matrices in order to improve the performance
of the active control system. The regularization techniques are applied on
the weighting matrices that are determined with the numerical model of the
laboratory setup.

Method 1

The near-source sensor strategy method 1 based on the FRFs from both the
disturbance and actuator forces to the near-source error sensor set and the far-
field performance sensor set as shown in equation (6.20), is considered first.
An inversion of the mobility matrix from the disturbance and actuator forces
to the near-source error sensors is needed in order to obtain the weighting
matrix:

Ŵ
˜v

= Y
˜ fsda · Ŷ˜

+

nsda
, (6.39)
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Figure 6.21: Error of the passive response at both far-field sensor sets after weighting of
the near-source sensor set with the corrupted weighting matrix based on both the primary
and secondary FRFs and with regularization of this weighting matrix at far-field sensor
set 1 (a) and at far-field sensor set 2 (b).

where (̂.) denotes a regularized representation. The (pseudo-)inversion in equa-
tion (6.39) is ill-conditioned, and therefore the influence of regularization on
the performance of the considered near-source error sensor strategy is investi-
gated. The regularized (pseudo-)inverse of the mobility matrix is determined
using the TSVD technique (see also appendix C.2):

Ŷ
˜

+

nsda
=

k∑

i

vi · uH
i

si
, (6.40)

where ui and vi are the left and right singular vectors of Y
˜ nsda, respectively, si

the ith singular value and k is the number of singular values taken into account
for the regularization. This number is determined by definition of a noise floor.
The singular values that are smaller than this noise floor are rejected and
omitted in the reconstruction. In Figure 6.21 the error in the prediction of the
passive response at the two far-field performance sensor sets is shown when
the near-source error sensor set is weighted with an unregularized matrix and
a regularized weighting matrix. It is clear that the large errors in the response
that occur due to the small errors in the FRFs, reduce considerably when the
inversion of Y

˜ nsda is regularized. Regularization has a similar effect on the
passive response of both far-field sensor sets.

The regularization of the near-source weighting matrix also influences the
active performance at the far-field performance sensor sets. This effect is
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(c) far-field sensor set 1 (1/3-octave bands)
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Figure 6.22: Active response for the near-source sensor strategy with the regularized
and unregularized corrupted weighting matrices based on both the primary and secondary
FRFs at far-field sensor set 1 (a,c) and at far-field sensor set 2 (b,d) (method 1).
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Figure 6.23: Active response for the near-source sensor strategy with the regularized and
unregularized corrupted weighting matrices based on the primary FRFs only at far-field
sensor set 1 (a) and at far-field sensor set 2 (b) (method 2).

shown for the far-field sensor sets 1 and 2 in Figures 6.22(a) and 6.22(b)
respectively. For a more clear picture of the obtained reductions, the fre-
quency responses are also shown in one-third octave bands in Figures 6.22(c)
and 6.22(d). The regularization results in an extra reduction of about 3 to 4
dB for both far-field sensor sets. The regularized solution of far-field sensor set
2 is a little more robust, because it shows a smaller difference between the op-
timal active far-field response and the active regularized weighted near-source
response.

Method 2

The robustness of the near-source error sensor strategy with the weighting
matrix Wd

v method 2 is analyzed in the same way. The regularized weighting
matrix is calculated by:

Ŵ
˜

d

v
= Y
˜ fsd · Ŷ˜

+

nsd
, (6.41)
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where Ŷ
˜

+

nsd
is the regularized inversion of the primary error sensor transfer

matrix. The influence of the regularization on the performance of the active
isolation system is not large as can be seen in Figure 6.23. The extra reduction
obtained at the far-field sensor sets is at maximum merely a few dB.

Methods 3 and 4

Instead of using the weighting matrix W
˜

d
v in a straightforward way, a strategy

was described that only weighted the contribution of the disturbance forces
to the near-source error sensor response (method 3). The influence of the
actuator forces was taken into account by extra off-line measured secondary
FRFs to the near-source and far-field sensor sets as shown in equation (6.38).
The influence of regularization on this near-source sensor strategy is shown in
Figures 6.24(a) and 6.24(b). The improvements are small, a few dB across the
whole frequency range. This near-source error sensor strategy can be improved
because the off-line measured mobility matrix Y

˜ nsa can be updated regularly.
For this reason the active performance responses at the far-field sensor sets
are determined in the ideal situation that the off-line measured mobility Y

˜ nsa

equals the real mobility Ynsa (method 4). The results are shown in Fig-
ures 6.24(c) and 6.24(d). The regularization improves the active performance
in the frequency region up to 400 Hz. The effect of the regularization on the
active far-field response is smaller for higher frequencies.

To compare the performance of the different regularized near-source error
sensor strategies, all responses are plotted in Figure 6.25 for far-field sensor
set 1 and in Figure 6.26 for far-field sensor set 2. This means that, besides
the passive response and the active response with direct minimization of the
far-field sensor response, also the regularized near-source error strategies are
depicted in the following order:

• Method 1: a weighting matrix based on both the primary and secondary
FRFs (min. vH

ns · Ŵ˜
· vd

ns).

• Method 2: the weighting procedure based on the near-source error re-

sponse due to the disturbance forces only (min. vH
ns · Ŵ˜

d · vns).

• Method 3: the weighting procedure based on the near-source error re-
sponse due to the disturbance forces only but with a correction for the

actuator influence (min. with Ŵ
˜

d
Berkh.).

• Method 4: same weighting procedure as for method 3, but without errors

in the secondary FRF Y
˜ nsa (min. with Ŵ

˜
d

Berkh. ideal).
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(b) far-field sensor set 2 (1/3-octave bands)
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(c) far-field sensor set 1 (1/3-octave bands)
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Figure 6.24: Active response with a weighted (based on primary FRFs only) near-source
sensor strategy at far-field sensor set 1 and 2 (a,b) (method 3) and for the ideal situation
without errors in Ynsa (c,d) (method 4).
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The least reduction is obtained with the near-source weighting based on the
primary FRFs only for both far-field sensor sets (method 2). When a cor-
rection is applied on the near-source error sensor response to take account of
the response due to the disturbance forces only (method 3), the performance
improves only slightly. Taking account of both the primary and the secondary
transfers for the determination of the weighting matrix itself (method 1), re-
sults in better reductions over the whole frequency range. For far-field sensor
set 2, this near-source error sensor strategy has the best results in the frequency
region below 100 Hz and from 400 up to 500 Hz. For the other frequencies, the
largest reduction is obtained for the ‘ideal’ near-source error strategy, with a
correction of the actuator influence on the near-source error sensor response
before the weighting procedure and with the assumption that the secondary
path is estimated perfectly (method 4). The latter error sensor strategy clearly
has the best performance for far-field sensor set 1.
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Figure 6.25: Overview of the active responses at far-field sensor set 1 for the considered
regularized near-source error sensor strategies in one-third octave bands.

Increasing the number of near-source sensors

The inversion of the primary near-source mobility matrix that is necessary
to determine the weighting matrix can also be regularized by increasing the
number of near-source sensors. The configurations considered so far were
determined systems, meaning that the number of near-source error sensors
is equal to the number of applied disturbance forces. The mobility matrix
Ynsd is thus a square matrix. It is known that the behavior for inversion can
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Figure 6.26: Overview of the active responses at far-field sensor set 2 for the considered
regularized near-source error sensor strategies in one-third octave bands.

be improved by over-determination, i.e. by increasing the number of near-
source sensors a rectangular mobility matrix with more rows than columns is
created. To investigate the robustness of this technique, the weighting matrix
is determined with the primary FRFs only but with four additional near-source
sensors. Besides increasing the number of near-source sensors, regularization is
also applied using TSVD. The influence of over-determination is investigated
with the near-source error sensor strategy that showed the best results, namely
method 4. The weighting matrix for the over-determined near-source error
sensor set is derived by:

Ŵ
˜

od

v
= Y
˜ fsd · Ŷ˜

od+

nsd
, (6.42)

where Ŷ
˜

od+

nsd
is the over-determined and regularized primary transfer function

to the near-source error sensors and Ŵ
˜

od

v
is the resulting weighting matrix.

The concept of over-determination is investigated with the near-source sensor
configuration shown in Figure 6.27. The obtained reductions at far-field sensor
set 2 for the over-determined and regularized solution are shown in Figure 6.27.
The performance of the over-determined near-source error sensor strategy is
slightly better than the determined near-source sensor set. However, these
small extra reductions in the performance response is at the expense of four
additional sensors. This means that TSVD can be better used for regulariza-
tion.
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Figure 6.27: Overview of the active performance responses at far-field sensor set 2 for
an over-determined near-source error sensor set.

6.3.5 Conclusions

In this section an alternative concept of near-source error sensor strategies was
presented. This method, based on a weighting matrix of the near-source error
sensors that is determined by the response of a chosen far-field performance
sensor set, can be implemented in three different ways. Investigation of the
robustness of this alternative concept of near-source error sensor strategies
showed that the results are much better and the robustness is much greater
compared to the concept of minimization of the transmitted power. For this
reason, this alternative concept is investigated with measured FRFs on the
laboratory setup in the next section.

6.4 Experiments

So far, the near-source error sensor strategies were studied on the numerical
model of the laboratory setup. In this section, the near-source error sensor
strategy with the weighting of a near-source sensor set based on a particular
far-field sensor response is investigated with experiments on the laboratory
setup. This error sensor strategy is more robust than the near-source error
sensor strategy based on minimization of the transmitted power.
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The procedure followed for the experiments is similar to the procedure used
for the numerical simulations. However, instead of the numerically determined
FRFs, the FRFs are now measured on the laboratory setup. The FRFs from
the disturbance forces to the near-source error sensor set and the far-field per-
formance sensor set are measured. The primary transfer matrices can then
be composed for both sensor sets. In the same way, the FRFs from the ac-
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Figure 6.28: Photo of the laboratory setup at TNO.
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structure



6.4. Experiments 201

tuators to both sensor sets are measured, after which the secondary transfer
matrices can be composed. The measured transfer matrices are used to deter-
mine the active isolation performance off-line with the optimal control theory.
This leads thus to the optimal performance that can be obtained theoretically
with an ideal controller, as explained in section 2.6.1. The three different
near-source error sensor strategies discussed in section 6.3 are applied, and
the performance of each of these methods is determined with the measured
transfer matrices. The controller is thus not implemented real-time and no
real active experiments are performed, but only the primary and secondary
transfer matrices are measured.

6.4.1 Experimental setup

The measurements were carried out on the laboratory setup described in chap-
ter 4. The setup is shown in Figure 6.28. The foundation plate, side plate
and radiation plate can be distinguished as characteristic components of the
receiver structure. Furthermore, the following components are depicted:

• A shaker (B&K 4809) to apply the disturbance force in the translational
directions at the top of each mount on the foundation plate.

• A force sensor (B&K 8200) to measure the force exerted on top of the
mounts by the shaker. This sensor signal is used as reference signal
to measure the primary transfer functions between the force input and
responses at different parts of the receiver structure.

• Actuators (Motran IFX 30-100) to apply actuator forces for the determi-
nation of the secondary transfer functions (between the actuator forces
and the responses at the receiver structure). A total of four actuators
are mounted on the foundation plate. Each actuator is able to exert a
force in the normal direction to the foundation plate. In contrast with
the applied disturbance forces, the actuator forces cannot be measured
directly because of the absence of a force sensor between the actuator
and the receiver structure. However, the current from the amplifiers to
the actuators can be measured and can be related directly to the actu-
ator force by means of the motor constant (which is 10.1 N/A for the
considered actuators). The measured current is used as reference signal
for the determination of the secondary transfer functions.

• Near-source sensors to measure the response near the source. These
sensors are accelerometers (Endevco 50) and used as error sensors in
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the off-line calculation of the active response. The near-source sensors
measure the normal accelerations at different locations of the foundation
plate.

• Far-field sensors to measure the performance response in the far-field.
These sensors are accelerometers (Endevco 50) and located at some dis-
tance from the mounts and are used as performance sensors for the
off-line determination of the weighting matrix. Two far-field sensor sets
have been used: 1) a far-field sensor set with 12 accelerometers on the
radiation plate only and 2) a larger far-field sensor set consisting of 28
accelerometers on the radiation plate and the side plate.

The sensor signals were processed by a Bruël & Kjær (B&K) Pulse system
with 29 measurement channels. One channel was reserved for the reference
signal (the disturbance force or actuator force signal), so a maximum of 28
accelerometers could be used in each measurement simultaneously.

Measurement procedure

Two types of FRFs were measured: the FRFs for the primary transfer matrix
(to determine the influence of the source) and the FRFs for the secondary
transfer matrix (to determine the actuator influence). The source was rep-
resented by a force excitation on the top of the mounts (see Figure 6.28) in
the three translational directions. This means that no moment excitations
are taken into account, because these are difficult to apply and to measure.
Hence, for the determination of the primary transfer matrix, 12 measurements
must be performed. The secondary FRFs were determined by measuring the
response at the accelerometers for each actuator excitation separately, imply-
ing that 4 measurements are needed. The measurements have been performed
in two sessions:

• Session 1 : The FRFs to both sensor sets (near-source and far-field)
are measured in one setup for each disturbance force and actuator force
separately.

• Session 2 : Only an extended far-field sensor set is measured for each dis-
turbance force and actuator force. For the determination of the transfer
matrix to the near-source sensor sets, the measurement results of ses-
sion 1 were used.

The advantage of the latter procedure is that a larger far-field sensor set can
be measured (maximum 28 channels), and thus a more global measure of the
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receiver response can be obtained. The disadvantage is that the ‘coherence’
between the near-source sensor set and far-field sensor set is less: the responses
of each sensor set are determined in separate measurements and thus under
different conditions.

near-source sensor

far-field sensor

side plate

foundation
plate

radiation
plate

(a) Session 1

far-field sensor

(b) Session 2

Figure 6.29: Schematic picture of the sensor sets of the two measurement sessions.

The sensor set of the first measurement session is shown in Figure 6.29(a). The
number of independent disturbance forces is 12 (three in each translational
direction at the top of the mounts). This means that at least 12 near-source
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sensors have to be used for a reliable determination of the weighting matrix.
Also, 4 extra near-source sensors were used for over-determination, resulting
in a better conditioning of the FRF matrix from the disturbance forces to the
near-source error sensors. This was shown in the previous subsection with
the numerical simulations. Consequently, 12 sensors remain for the far-field
performance sensor set. These far-field sensors are all located on the radiation
plate.

The sensor set for the second measurement session is shown in Figure 6.29(b).
During this measurement session only far-field sensors were used. The far-field
sensor set consists of a total of 28 sensors: 15 sensors attached to the radiation
plate and 13 sensors attached to the side plate. The sensor set on the radiation
plate of the second measurement differs from the sensor set of the first mea-
surement. The sensors at the corners of the radiation plate were translated a
little the improve the response due to the excitation of the receiver structure.

The measurements were performed with a swept sine from 0 to 800 Hz.
The sweep duration was 1 second and for the FRF estimation averaging over
60 signal blocks was used. Apart from the H1 estimate of the FRF between
the reference signal and accelerometers, the cross-spectra, auto-spectra and
coherence were also determined. More information about the determination
of the H1 FRF estimate can be found in appendix G.

6.4.2 Measurement results

The measured FRFs are used to determine the optimal active performance
off-line at the two considered far-field sensor sets (indicated by 1 and 2) by
means of the optimal control theory. First, the performance of the unweighted
near-source error sensor strategy is determined. The results are shown in Fig-
ure 6.30. Direct minimization of the near-source error sensors results in a poor
performance with hardly any reduction at both far-field sensor sets. This ten-
dency was also seen in the simulations. Besides the active performance for
direct minimization of the near-source error sensors, also the optimal results
are shown. These optimal results are obtained by using the far-field perfor-
mance sensor sets as error sensor sets, resulting in a theoretical reduction of
around 15 dB across the whole frequency range. Similar reductions were also
shown in the simulations with the numerical models.

Next, the measured FRFs are used to compose the primary and secondary
transfer matrices to the near-source and far-field sensor sets. The weighting
matrices can subsequently be determined with these transfer matrices, in the
same way as shown for the numerical simulations. First, the weighting proce-
dure is considered taking into account both the primary and secondary FRFs,
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(b) far-field measurement 2

Figure 6.30: Active response with minimization of the unweighted near-source error
sensor set at the two far-field sensor sets with the measured FRFs on the laboratory
setup.

as was shown in equation (6.33) (method 1). When the weighting matrix is
determined in this way, the actuator force vector that minimizes the weighted
near-source error sensors can be determined. However, the ‘real’ FRFs are
not known, so the same measured FRFs are used to determine the response
at the far-field sensor sets. This means that the primary and secondary FRFs
for the determination of the weighting matrix and the actual response are the
same. This should give ‘perfect’ results, i.e. yield the same reduction as di-
rect minimization of the far-field sensor set, because the weighting matrix is
determined for the uncorrupted FRFs. This is indeed the case as shown in
Figure 6.31.

Another way to determine a weighting matrix can be realized by using the
primary transfers only, as shown in equation (6.34) (method 2). The results
when the near-source error sensors are weighted with this weighting matrix
are shown in Figure 6.32. To reduce the near-source sensor set in order to
have a square and determined weighting matrix (12 sensors are needed for 12
disturbance forces), the four sensors at the corners of the foundation plate were
omitted in the transfer matrices from the disturbance and actuator forces to
the near-source error sensors (see also Figure 6.29(a)). For far-field sensor set
1, this weighting strategy results in considerably less performance than the
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Figure 6.31: Active response at the two far-field sensor sets for the weighted near-
source error sensor set determined with the measured FRFs on the laboratory setup. The
weighting matrices are determined with a combination of primary and secondary FRFs
(W1 and W2 respectively).

optimal result. However, reductions are still obtained and the performance
is better than for minimization of the unweighted near-source sensors. In
Figure 6.32(b) it can be seen that this near-source error strategy does not work
for far-field sensor set 2. The performance is not better than for minimization
of the unweighted error sensors. At just a few frequencies some reductions
are observed, but increases also occur compared to the passive response occur.
The reason for this is bad weighting: the weighting matrix Wd

v applied to
the near-source error sensor response is not a good measure for the far-field
sensor response. This is elucidated in Figure 6.33 for far-field sensor set 2.
In Figure 6.33(a) the passive response of the far-field sensor set is shown
as well as the passive near-source error sensor responses (indicated by vp

ns)
is weighted with the weighting matrix Wd

2 and with W2, respectively. It
can be seen that the three results agree very well with each other, which
means that both the weighting matrices function properly in order to obtain
a good measure of the passive performance response in the far-field. So, the
weighting matrix determined with the primary FRFs (Wd

2) and determined
with both the primary and secondary FRFs (W2) function well to represent
the passive far-field response. Instead of weighting the passive near-source
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error sensor response, also the active near-source error sensor response can be
weighted. When the far-field sensor response is minimized, the corresponding
active near-source sensor response can be determined and is indicated by va

ns.
This near-source error sensor response can subsequently be weighted to obtain
a measure for the active far-field sensor response. The results are shown in
Figure 6.33(b). It can be observed that the weighting matrix based on the
primary FRFs only, Wd

2, is not a good measure for the active far-field response,
whereas the weighting matrix W2 also functions for the active situation. It can
be concluded that the weighting matrix based on the primary FRFs only is not
a good weighting matrix when the actuators influence the receiver structure,
despite the fact that it functions well in the passive situation.
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Figure 6.32: Active response at the two far-field sensor sets for the weighted near-source
error sensor set determined with the measured FRFs on the laboratory setup. The weight-
ing matrices are determined with the primary FRFs only (Wd

1 and Wd
2 , respectively).

The procedure with a weighting matrix based on the primary FRFs can be
functional when the near-source error sensor response is corrected for the influ-
ence of the actuators (method 3). This concept was described in section 6.3.2.
In terms of the measured FRFs, the near-source error sensor response due to
the disturbance only can be determined as in equation (6.36). However, in
this situation the correction term that is subtracted (the ‘off-line’ determined
secondary FRF) is the same as the real-time secondary FRF. In practice, there
will be always a little discrepancy between these two FRFs, but in this situ-
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Figure 6.33: Response at far-field sensor set 2 on the laboratory setup determined by
weighting of the passive near-source error sensor response (a) and determined by weighting
of the active near-source error sensor response (b). The considered weighting matrices are
determined with the primary FRFs only (Wd

2) and with both the primary and secondary
FRFs (W2).

ation only one secondary FRF is measured. The corrected near-source error
sensor response is subsequently weighted with a weighting matrix based on
the primary FRFs only as shown in equation (6.37). After that, the influence
of the actuator forces on the far-field sensor response is taken into account as
described by equation (6.38). This procedure is also used to determine the
active response with the measured FRFs. When the near-source error sensor
response is corrected for the actuator influence before the weighting Wd

v is ap-
plied, the obtained reductions appear to be similar to the reductions obtained
with minimization of the far-field response itself.

Error sensitivity

It has been shown that the different near-source error criteria gave optimal
results for the near-source error sensor strategies based on a weighting matrix
procedure that eliminates the actuator influence. This was to be expected,
because the FRFs that are used to determine the weighting matrices are the
same FRFs that are used to determine the ‘real-time’ transfer to the receiver
structure. This is never the case in a real application and the off-line measured
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FRFs that are used for the weighting procedure will consequently always differ
from the actual FRFs. The influence of these (small) differences between the
off-line and real-time FRFs on the active performance is now investigated in
more detail.

The weighting strategies of the near-source error sensors were applied to
the two far-field sensor sets, as shown in Figure 6.29. These two sensor sets
have 8 sensors in common, and are the so-called 8 joint sensors located on
the radiation plate. The measurements were performed at different times;
the time difference between the two measurement sessions was one day. This
implies that the measured FRFs differ from each other and this can be seen
in Figure 6.34. One mobility component is illustrated in this figure, namely
the FRF from the actuator at mount 1 to one of the 8 joint sensors on the
radiation plate. In Figure 6.34(a) the magnitude of this mobility component
is depicted for the measurement on day 1 and on day 2. The differences in
the magnitude are considerable for these two measurements, but the same
tendencies can still be observed. The same conclusion can be drawn for the
phase of the FRFs, as shown in Figure 6.34(b).
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Figure 6.34: The magnitude and phase of the secondary mobility component from the
actuator at mount 1 to one of the far-field sensors on the radiation plate measured on
day 1 and 2.

The dynamic properties of the considered laboratory setup apparently change
with time. Hence, the weighting procedure must be quite robust to cope with
such changes. The weighting matrix is based on off-line measurements and
does not adapt to changes in the dynamic behavior of the structure after the
off-line measurements. To investigate the robustness of the considered near-
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source error sensor strategy, the weighting based on the 8 joint sensors of the
far-field response of day 1 is applied as a weighting matrix on the near-source
error sensor response of day 2. The weighting matrix is thus determined with
the measured FRFs of day 1:

W1
v = Y

˜
1
fjda · Y˜

1+

nsda, (6.43)

where Y
˜

1
fjda is the matrix with FRFs from both the disturbance and actuator

forces to the 8 joint sensors on the radiation plate and where the measured
FRFs on day 1 are indicated by a superscript (.)1. The far-field sensor response
on day 1 can consequently be determined according to:

v1
fj = W1

v · v1
ns, (6.44)

where v1
fj is the far-field sensor response at the 8 joint sensors. The same

procedure can be applied to the measurements on day 2, and the weighting
matrix can be determined according to:

W2
v = Y

˜
2
fjda · Y˜

1+

nsda, (6.45)

where Y
˜

2
fjda is the matrix with FRFs from both the disturbance and actuator

forces to the 8 joint sensors on the radiation plate and the measured FRFs on
day 2 are indicated by a superscript (.)2. Notice that the secondary FRFs of
day 1 are used, because only an extended far-field sensor set was measured on
day 2. The weighting matrix W1

v will differ from W2
v, due to the differences

between the far-field FRFs Y
˜

1
fjda and Y

˜
2
fjda. It was shown in the previous

subsection that these weighting matrices function very well.
First, assume that the off-line measured weighting matrix is determined

with the measurements of day 1, see equation (6.43). The next step is to cal-
culate the optimal actuator force by minimization of the Hermitian quadratic
form of equation (6.44). This actuator force vector is indicated by f1

a . The
next step is to apply this actuator force vector on the measured FRFs on day 2
according to:

v2
fj = Y

˜
2
fjd · fd + Y2

fja · f1
a , (6.46)

where Y
˜

2
fjd is the primary transfer to the joint far-field sensors measured on

day 2 and Y
˜

2
fja is the secondary transfer to the joint far-field sensors on day 2.

These transfer matrices differ from the corresponding transfer matrices mea-
sured on day 1. However, for the considered applications, the near-source error
sensor strategy should be robust enough to cope with these variations in the
FRFs. The results for the far-field sensor response are shown in Figure 6.35.
It can be seen that the weighting matrix W1

v, that worked perfectly for the
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measured FRFs on day 1 as was shown in Figure 6.31 for the whole far-field
sensor set, does not work at all when the FRFs differ slightly. In Figure 6.36
the active response at the far-field sensor set of day 2 is shown when the actu-
ator force is determined with minimization of the far-field response with the
FRFs measured on day 1. It can be observed that these results are the same
as the results obtained with the use of the weighting matrix determined with
the FRFs measured on day 1. This implies that the weighting procedure itself
works, but the far-field response is sensitive to the actuator forces that are ex-
erted on the receiver structure. The actuator forces that are able to reduce the
far-field sensor response on day 1 are not able to reduce the far-field response
on day 2.
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Figure 6.35: Active response with a weighting matrix determined with the FRFs measured
on day 1 and applied on the actual FRFs measured on day 2.

6.5 Conclusions

Two basic concepts of near-source error sensor strategies were considered:
minimization of the structural power injected into the receiver structure and
weighting of a near-source error sensor set based on the off-line measured
response of a performance sensor set desired to be minimized.

Concept 1: Minimization of power:
The minimization of the injected structural power was considered with the
application of a weighting matrix to reduce the number of error sensors. This
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Figure 6.36: Active response with direct minimization of the far-field response of day 1
and applied on the actual FRFs measured on day 2.

means that only the velocities or the forces have to be measured at the connec-
tion points of the passive resilient mounting system with the receiver struc-
ture. The weighting matrix is a local mobility matrix of the receiver when
the junction forces are measured or a local impedance matrix of the receiver
when accelerometers are used. The advantage of this error sensor strategy
is that with a reduced number of sensors (equal to the number of structural
transmission paths of the mounting system) a global measure of the dynamic
receiver response is obtained. It was shown that a good measure of the trans-
mitted power is obtained when only a few of the power modes of the weighting
matrix are used. The weighting matrix must be determined with off-line mea-
surements, and contain for this reason small measurement errors (corrupted).
The concept of power modes can be used to regularize the weighting matrix.
However, this regularization is not very effective and no good reductions are
obtained for the regularized corrupted weighting matrices when used as an
error criterion for active isolation. This sensor strategy is very sensitive to
small measurement errors in the responses and small measurement errors in
the weighting matrices. In practice it is also not easy to measure the local
mobility matrix, because the source has to be removed and accurate multi-
directional mobility measurements are extremely demanding. This is a disad-
vantage for the practical applicability of this weighting procedure. For these
reasons, and in particular because of the bad robustness, another approach
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was introduced based on weighting of a near-source sensor set with a far-field
approach.

Concept 2: weighting of a near-source sensor set based on a far-field re-
sponse:
To obtain a possibly more robust near-source error sensor strategy, a concept
was investigated based on the off-line measurement of a far-field performance
sensor set. The response of the performance sensor set was used to determine a
weighting matrix for the near-source error sensor strategy. When this weight-
ing procedure is applied on the near-source error sensor response, the far-field
response is ’virtually’ measured. Two different approaches were studied to
derive this weighting matrix: using both the primary and secondary FRFs to
the near-source and far-field sensors and using the primary FRFs only. Sim-
ulations showed a more robust behavior in comparison with minimization of
the injected structural power. The robustness of the concept with a weighting
matrix based on the primary FRFs only can be improved by correcting the
near-source error sensor response for the actuator influence and has a similar
performance as when using a weighting matrix determined with both the pri-
mary and secondary transfer matrices. The concept with elimination of the
actuator influence is preferred, because less near-source sensors are needed
as when the weighting matrix approach based on the primary and secondary
FRFs is used.

The main difference between the two concepts is that the concept of mini-
mization of injected structural power results in global reduction of the receiver
response. This is not easy to implement using the second concept, because it
can only be obtained by a definition of a large performance sensor set. How-
ever, with a good choice of the performance sensor set reductions are obtained
at locations where reductions are desired. It was shown in chapter 4 that
minimization of the transmitted power does not necessarily mean that reduc-
tion is obtained at the desired locations. In particular, large reductions are
obtained at locations with a large contribution to the kinetic energy, i.e. near
the source. This disadvantage and also the expected lack of robustness have
led to the decision not to use power minimization in the experimental part of
this study. Instead, the second concept of near-source sensor weighting was
used for the experiments on the laboratory setup.

To investigate the use of the second concept of near-source error sensor
weighting on a real application, measurements have been performed on the
laboratory setup. The measured FRFs were used to determine the weighting
matrix and to calculate the active response off-line with the optimal control
theory. It was shown that the weighting matrix has to be determined with
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both the primary and secondary measured FRFs to obtain a good measure for
the far-field response. When the weighting matrix was determined with the
primary FRFs only, a correction of the near-source error sensor response had
to be applied for the actuator influence. It was shown that the measured FRFs
can change considerably: the response of some sensors of the far-field sensor
set was measured on two different days and showed some difference. These dif-
ferences are considered quite realistic and are therefore expected to be present
in the considered applications for hybrid isolation. It was shown that these
realistic variations in the FRFs have a large influence on the actual actua-
tor forces and the reduction obtained. When the receiver structure behaves
slightly differently than during the off-line measurements for the determination
of the weighting matrix, that weighting matrix is no longer a representative
measure of the far-field response. This makes the use of these off-line weighting
techniques very doubtful for the considered applications of hybrid isolation.
Therefore, the final conclusion of this chapter on near-source sensor strategies
is that neither the injected power approach nor the approaches with off-line
determined matrices are promising for active (hybrid) vibration isolation in
complex vibrating structures.



Chapter 7

Conclusions and discussion

7.1 Conclusions

This thesis describes the development, validation and application of efficient
analysis tools for hybrid isolation systems. Essentially, three major topics have
been treated:

• A general theoretical concept for modeling hybrid isolation systems.
This concept has been illustrated with two applications.

• A numerical modeling tool for rubber vibration isolators.

• The concept of using near-source error sensors.

The analysis tools can be used for many kinds of hybrid isolation applications.
The application considered in more detail in this thesis is the hybrid mounting
of machinery in vehicles and ships. The conclusions arising from each topic
are discussed in more detail below.

7.1.1 Models of hybrid isolation systems

A general model was presented to describe hybrid isolation systems with a
source, a resilient multi-point and multi-directional hybrid mounting system
and a receiver structure. The model allows the use of all types of repre-
sentations of linear dynamic behavior. Mobility or impedance matrices can
be determined by measurements or can be calculated with analytical or nu-
merical models. The active isolation part is described by a set of external
actuator forces, which are obtained with the optimal control theory and act
on the receiver structure at the connections of the mounts with the receiver.

215



216 Conclusions and discussion

The actuator forces are determined with optimal control by minimization of
a Hermitian quadratic error function. The resulting numerical tools enable
the user to perform simulation studies, for example to investigate different
types of error sensor strategies. Besides structural response error criteria, like
minimization of forces and velocities of the receiver structure, acoustic error
criteria have also been considered, namely the free field radiation and the
acoustic radiation of a part of the receiver structure into an enclosure.

The general concept was used to analyze two applications of hybrid isola-
tion. First, a relatively simple isolation system was analyzed, where a rigid
source is hybridly isolated from a simply supported receiver plate. The dy-
namics of the subsystems were described analytically. From the analysis of
this model, the following conclusions can be drawn:

• When the mobilities of the receiver structure are determined with a
modal expansion technique it is important to take residual modes into
account. Otherwise the error caused by the modal truncation will be
considerable for the driving point mobilities (see section 3.2.3).

• A good global reduction of the whole receiver response can be obtained
with just one actuator per mount, whereas the vibration transmission
occurs in several more DOFs. A good reduction of the radiated sound
power is also obtained (see section 3.4).

• Minimization of the transmitted power works well and yields a global
reduction of the receiver plate vibrations. However, all directions of
the vibration transmission into the receiver structure have to be taken
into account. When, for example, the transmitted power in only one
direction is measured for active control, power circulation via other di-
rections is overlooked. This phenomenon was observed especially in the
low frequency region (see section 3.4.1).

• Error sensor strategies that directly minimize the velocities, forces or a
weighted combination of these two at the junctions between the mounts
and the receiver, also yield a global reduction of the receiver plate re-
sponse (see section 3.4.1).

The second system that has been considered is a FEM model of a labora-
tory setup with a dynamic behavior that is quite complex and representative
for ship-like structures. This was demonstrated by showing the high number
of modes in the frequency range of the simulations, the high modal overlap
and the multi-directional nature of the structural power transmission via the
mounts. In the first place, the actuator configuration was considered:
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• The receiver response can be actively controlled with a reduced number
of actuators. SVD analysis shows that only a few field shapes with
corresponding source shapes have a large contribution to the response
of the error sensor set. The actuators minimize the most efficient field
shapes in the first place. With an SVD analysis of the primary path
it can be shown that the number of actuators is an indication of the
number of field shape participations that can be effectively reduced (see
section 4.5.1).

• An important point of attention, besides the obtained reduction of the
error sensor response, is the actuator effort that is needed to obtain the
reduction. Increasing the number of actuators above a certain num-
ber may still provide extra reduction of the error sensor response, but
may also result in a disproportional increase of the actuator effort (see
section 4.5.1).

• When a large number of actuators is used, weighting of the actuator
forces may be used as part of the control strategy to prevent that the
actuator forces become disproportionately large. Although the weighting
procedure results in a decrease of the actuator effort, the performance
also decreases and becomes comparable with the performance obtained
with a reduced set of actuators, which is more cost-effective. The opti-
mum number of actuators is therefore a trade-off between the obtained
reduction and the actuator effort. The optimal solution to this trade-off
can be investigated in two ways. The first way is to make an actu-
ator effort analysis (by investigating the active response for different
amount of actuator weighting). Another way is using the SVD analysis
and investigating the reduction in terms of participations of the primary
field shapes. When increasing the number of actuators gives no extra
reduction of the most efficient field shapes contributing to the active
response, the influence of the extra actuators is not (cost-)effective (see
sections 4.5.1 and 4.5.2).

• The SVD analysis of the secondary path provides information on the
most efficient actuator directions by considering the contribution of each
actuator direction to the most dominant field shapes (see section 4.5.3).

Subsequently, attention was paid to the sensor configuration, leading to the
following conclusions:

• Actuators located near the vibration source are able to reduce the vibra-
tional and acoustic responses well at locations far from the source (see
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section 4.6).

• The use of a global measure of the receiver response for active isolation,
like minimization of the kinetic energy or the transmitted power, has the
advantage that a global reduction of the receiver response is obtained.
This prevents the increase of the active response at certain locations
of the receiver structure in comparison with the passive response. A
disadvantage is that these types of error criteria try to minimize the
largest responses, which implies that the largest reduction is obtained
near the source of excitation. This is often not desirable, because in
some cases reduction is desired at some distance from the source of
vibrations, e.g. in the passenger accommodations in a ship rather than
in the engine room. Minimization of the response of a structural error
sensor set attached to the receiver structure results in a good reduction
of the error sensor response itself, but an increase of the response may
occur at other locations (see section 4.6.1).

• Good reductions of acoustic cost functions can be established with active
isolation techniques. Using cost functions for structural vibrations re-
sults, generally speaking, in less reduction of the acoustic response (like
the radiated sound power or acoustic potential energy in a receiver en-
closure), than using an acoustic cost function. However, the use of such
structural cost functions will also result in reduction of the acoustic re-
sponse. In particular it was shown that minimization of transmitted
power results in a decrease of acoustic responses in the low frequency
range (see section 4.7).

• The performance achieved for active isolation with minimization of the
forces or velocities at the connection points of the mounting system with
the receiver structure is, in contrast with the simple and analytically de-
scribed isolation system in chapter 3, very poor for the considered con-
figuration. The multi-directional vibration transmission from the source
to the receiver structure in combination with a dynamically complex
behavior of the receiver structure makes the straightforward use of this
kind of error criteria not suited to obtain reductions at a distance from
the source (see section 4.6).

7.1.2 Numerical models of passive rubber vibration isolators

For the actual implementation of the concept of hybrid isolation, a hybrid
mount has to be designed. This mount consists of passive vibration isola-
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tor(s), actuator(s) and, when useful, integrated sensors. An important point
to consider and the first step with respect to the design, is the isolation char-
acterization of the passive vibration isolator.

The isolation characterization was determined by calculating the dynamic
stiffness matrix of the isolator. Finite element models were used to determine
the stiffness matrices, taking into account the effect of a pre-deformation.
With the developed tool the multi-directional stiffnesses of rubber vibration
isolators with complex geometries can be calculated. Two effects were taken
into account: the influence of the dynamic excitation and the pre-deformation.

• The dynamic excitation causes wave effects in the rubber material of the
isolator. These wave effects cause an increase in the dynamic stiffness,
even to such an extent that the stiffness may increase by a factor 20
compared to the static stiffness. This means that the stiffness of the
isolator is much larger at certain frequencies than expected from the
static stiffness.

• The static pre-deformation of the isolator causes a change of the material
behavior and a change of shape of the isolator. The effects of these
changes on the dynamic stiffness are less pronounced than those of the
wave effects, but may still result in an increase in the dynamic stiffness
of about a factor 2 at some frequencies.

The most important requirement for obtaining a reliable numerical model
of a rubber isolator is a correct material description of the rubber material.
Because proper data are often lacking, a procedure has been presented to de-
termine the material parameters with the help of measurements of the whole
vibration isolator. The resulting rubber parameters can be used to determine
the isolation characteristics in other directions than the directions that can be
measured. Also the isolation behavior of different configurations (like other
geometries) and pre-deformations can be determined in a numerical way when
the material parameters are known. A static force-displacement measure-
ment is performed to determine the static material parameters and a dynamic
transfer stiffness measurement is performed to determine the dynamic ma-
terial parameters. This procedure was demonstrated for measurements on a
silica-reinforced rubber vibration isolator.

7.1.3 Near-source error sensor strategies

The last topic studied in this thesis is the use of near-source error sensor
strategies. The positioning of the error sensors near the source has several
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advantages with respect to the concept of positioning the sensors far away,
e.g. in the receiver enclosures. The advantages are easier implementation
for the considered applications of hybrid isolation, the possibility to define
a global cost function of the receiver response and less influence of flanking
paths and measurement noise on the error sensors. Two approaches were
considered: minimization of the injected power into the receiver structure and
minimization of a near-source error sensor strategy weighted with an off-line
measured ‘transmission path matrix’ between the near-source error sensors
and the far-field performance sensor set response.

A disadvantage of the approach based on the minimization of the injected
structural power to the receiver structure is that both the multi-directional
velocities and forces have to be measured at the mount connection points.
This can be circumvented by introduction of an off-line measured weighting
matrix, so that only the forces or velocities have to be taken into account for
the error criterion. However, error analyses showed that the robustness of this
error sensor strategy is very poor.

For this reason, a second approach was introduced based on a weighting
matrix determined with an off-line measured far-field performance sensor set
response. This approach worked very well for the ideal situation without
errors in the weighting matrix. Two concepts were proposed to determine
the weighting matrix. One uses both the primary and secondary FRFs and
the other uses only the primary FRFs. The error analyses showed that the
first method of determining the weighting matrix, thus with using both the
primary and secondary FRFs, is more robust. However, the robustness with a
weighting matrix determined with the primary FRFs only can be improved by
subtraction of the actuator contribution from the near-source sensor response
before the weighting is applied. This correction was performed with the use
of the off-line measured secondary FRFs.

The second approach of near-source error sensor weighting with a weighting
matrix determined with a far-field performance sensor response, showed a
more robust behavior for errors in the weighting matrix in comparison with
the approach based on minimization of the transmitted power. For this reason
this concept was used to determine a weighting matrix with measured FRFs
on the laboratory setup. The results of the measurements show that a correct
weighting matrix can only be derived when both the primary and secondary
FRFs are taken into account for the determination of the weighting matrix.
Otherwise, when only the primary FRFs are taken into account, the near-
source error sensor response must be corrected with the actuator influence
before the weighting. However, from the measurements it appeared that the
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FRFs may change in time, resulting in a poor performance of the weighting
matrices. It showed that the active performance is very sensitive to small
changes in the actuator forces. For this reason it is not possible to use this
kind of off-line weighting techniques for the considered applications.

7.2 Discussion

An important conclusion is that hybrid isolation functions; considerable re-
ductions of the (far-field) error sensor response at the receiver structure can
be obtained with hybrid isolation. However, this conclusion is not new and
has been shown in earlier model studies (e.g. [40, 41]) and even practical
applications have already been shown to work (e.g. [80]).

In contrast with the more academic models in the literature, the model
presented in chapter 4 is suitable for and applicable in the hybrid isolation of
machinery in vehicles. This model has been used to derive some new rules of
thumb with respect to the design of the actuator configuration. It was shown
that it is possible to determine the optimal number of actuators by considering
both the obtained active reductions and the actuator effort by using models
based on mobility matrices only (the only information that can be obtained
for most practical applications). It was also shown that information about
the effective excitation directions of the actuators can be obtained from the
mobility matrices that describe the error sensor response due to the actuators
only.

Also the design of sensor configurations and in particular near-source er-
ror sensor strategies was an important research objective. The concept of
near-source error sensors studied in the literature is based on the minimiza-
tion of the transmitted power (e.g. [41, 100]). In this thesis a new concept
was introduced by measuring the transmitted power using a weighting ma-
trix. However, analyses showed that this concept is not robust enough to be
applied in the considered applications. Another new concept of near-source
error sensor weighting has been presented that is based on an off-line measured
performance response. Simulation results showed a more robust behavior for
this near-source error sensor strategy than the minimization of the transmit-
ted power. However, analyses with real measurement data on a representative
laboratory setup showed that this concept is also not sufficiently robust.

The practical implementation of the passive part of the hybrid isolation
systems is a different subject of study. In this study the numerical modeling of
rubber vibration isolators was considered. The concept of using (numerical)
models to characterize isolators is not new (see e.g. [67]), but obtaining a
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multi-directional isolation characterization with the goal to use it in combina-
tion with active isolation is a new concept. It was shown that a good multi-
directional characterization of the passive vibration isolator can be obtained.
In combination with the method presented to obtain the rubber material prop-
erties by updating a numerical model with measurement data of the rubber
isolator, the presented tools are very useful and needed in the first step in the
design process of a hybrid mounting system.

The use of near-source sensors with off-line determined weighting matri-
ces is not promising for further study. The use of far-field sensors is much
more relevant. Furthermore, attention must be paid to the integration of the
active isolation and the passive isolation, meaning a good ‘hybrid’ design of
the passive isolation system in combination with the application of actuators.
The tools used in chapter 5 can be used for this purpose. The passive iso-
lation system must dynamically decouple the different directions of vibration
transmission. Some stiff directions must still be present to meet the static
requirements and stability, but the actuators can be located in these direc-
tions to obtain the dynamic decoupling in an active way. This kind of hybrid
components can be investigated in more detail with the tools described in
chapter 2 and chapter 4 to analyze different sensor strategies. In practice it
is difficult to obtain a global measure of the receiver response with far-field
sensors. For this reason, the sensor configuration is an important point of
attention and especially the effect of the local vibration or noise control on
the global response of the receiver response must be analyzed. Also, the ap-
plication of unweighted near-source error sensor might work more effectively
when the structure-borne sound transmission is directed by just a few domi-
nant transmission paths when the hybrid mounting is designed as described.
When local error sensors are located in the few most stiff directions, the influ-
ence of the actuators can be considered as a active stiffness reduction for these
dominant directions. A similar approach has been used by Nijsse, Super, van
Dijk and Jonker [95] on a six degrees of freedom vibration isolation setup and
good active reductions could be obtained. Using such an approach, reduction
might be obtained with just a few actuators and local near-source sensors and
the concept of hybrid isolation can be applied successfully in practical appli-
cations where the interior noise levels are dominated by the source that is to
be hybridly isolated.



Nomenclature

General

Roman

B Left Cauchy Green tensor
c Viscous damping coefficient [Ns/m]
c0 Mean propagation speed of sound [m/s]
Cl Wave speed in longitudinal direction of the plate [m/s]
Cs Wave speed in shear direction of the plate [m/s]
C Viscous damping matrix
C Right Cauchy Green tensor
e Error signal

E Young’s modulus [ N/m2]

E′ Real part of the Young’s modulus [ N/m2]

E′′ Imaginary part of the Young’s modulus [ N/m2]
Edis Dissipated energy [J]
Ein Energy input [J]
Ekin Kinetic energy [J]
Ep Acoustic potential energy [J]
Epot Potential energy [J]
F Deformation gradient tensor
fa Actuator force [N]

fopt
a Optimal actuator force [N]
fi Filter factor i [-]
f Force vector [N]
fa Actuator force vector [N]
fd Disturbance force vector [N]
fda Combined disturbance and actuator force vector [N]
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fm Total force vector at junctions of mounts [N]
fmr Total force vector of mounts at source junctions [N]
fms Total force vector of mounts at receiver junctions [N]
fr Total force vector at receiver junctions [N]
fs Total force vector at source junctions [N]
fg
z Generalized force [N]
g(~r|~r0) Green’s free space function [1/m]

G Shear modulus [ N/m2]

G0 Initial shear modulus [ N/m2]
G(~r|~r0) Green’s function for radiation into enclosure [1/m]
h Height or thickness [m]
Hp Primary transfer matrix

Hfr
p Primary transfer matrix to forces at receiver junctions

Hfs
p Primary transfer matrix to forces at source junctions

Hfv
p Primary transfer matrix to source and receiver junctions

Hvr
p Primary transfer matrix to velocities at receiver junctions

Hvs
p Primary transfer matrix to velocities at source junctions

Hs Secondary transfer matrix

Hfr
s Secondary transfer matrix to forces at the receiver junctions

Hfs
s Secondary transfer matrix to forces at the source junctions

Hfv
s Secondary transfer matrix to source and receiver junctions

Hvr
s Secondary transfer matrix to velocities at receiver junctions

Hvs
s Secondary transfer matrix to velocities at source junctions

I Area moment of inertia [m4]
Imp mass polar moment of inertia per unit length [kgm]
Īn Time-averaged sound intensity in the normal direction [W/m2]
J Cost function or Hermitian quadratic error criterion
J Polar moment of inertia of cross-sectional area [m4]
k Acoustic wave number (= ω/c0) [1/m]
k Spring stiffness [N/m]
k0 Initial bulk modulus [N/m2]
kl Longitudinal wave number [-]
ks Shear form factor [1/m]
kt Torsional wave number [1/m]
k11 Blocked dynamic driving point stiffness matrix junction 1
k12 Blocked dynamic transfer stiffness matrix junction 1 and 2
k21 Blocked dynamic transfer stiffness matrix junction 2 and 1
k22 Blocked dynamic driving point stiffness matrix junction 2
K Structural stiffness matrix
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Kf Acoustic stiffness matrix
Lw Sound Power Level [dB]
Lx Length in x-direction [m]
Ly Length in y-direction [m]
Lz Length in z-direction [m]
m Discrete mass [kg]
m Moment [Nm]
M Structural mass matrix
Mf Acoustic mass matrix
N(ω) Total number of modes below the radial frequency ω [-]
p Acoustic pressure [Pa]
pf Acoustic pressure vector at field points [Pa]
Pt Transmitted structural power [W]
q Volume velocity [m3/s]
qi Modal participation of the ith mode [-]
q Vector with modal participations [-]
Q Matrix with modal participations
~r Vector from source point to field point [m]
R Distance between the source point and field point [m]
R Acoustic radiation resistance matrix
S Surface domain [m2]
si ith singular value
S Diagonal matrix with singular values in decreasing order
t Time [s]
T General filter or transformation matrix
Tar Actuator transformation matrix at the receiver side
Tas Actuator transformation matrix at the source side
Tm Transformation matrix of the mounting system
Tr Transformation matrix of the receiver
Ts Transformation matrix of the source
U Strain energy function [J]
ui ith left singular vector
U Matrix with the left singular vectors
v Structural velocity [m/s]
vn Structural normal velocity [m/s]
v Structural velocity vector [m/s]
vi ith right singular vector
vfs Far-field sensor velocity response [m/s]
vn Structural normal velocity vector [m/s]
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vm Total velocity vector at the mount junctions [m/s]
vmr Total velocity vector of the mounts at the receiver junctions [m/s]
vms Total velocity vector of the mounts at the source junctions [m/s]
vns Near-source sensor velocity response [m/s]
vr Total velocity vector at the receiver junctions [m/s]
vs Total velocity vector at the source junctions [m/s]
vsr Velocity vector of a structural sensor set [m/s]
V Volume domain [m3]
V Matrix with the right singular vectors
w Structural displacement [m]
W̄ Time-averaged radiated sound power [W]
W Weighting matrix for quadratic near-source error response
Wa Actuator weighting matrix
Wd Weighting matrix W based on primary FRFs only
Wv Weighting matrix for near-source error velocity sensors
Wd

v Weighting matrix Wv based on primary FRFs only
Wod

v Weighting matrix Wv for over-determined near-source sensor set
x Structural displacement [m]
x Structural displacement vector [m]
Y Mobility [m/Ns]
Yr Mobility matrix of the receiver
Yfsa Mobility matrix from fa to far-field sensors
Yfsd Mobility matrix from fd to far-field sensors
Yfsda Combined mobility matrix from fd and fa to far-field sensors
Ynsa Mobility matrix from fa to near-source sensors
Ynsd Mobility matrix from fd to near-source sensors
Ynsda Combined mobility matrix from fd and fa to near-source sensors
Ysd Mobility matrix of the source related with fd
Ysr Mobility matrix from receiver forces to a structural sensor set
Yss Mobility matrix of the source related with fs
z Impedance [Ns/m]
Zf Acoustic impedance matrix for free field radiation
Zrr Driving point impedance matrix of the mounts (receiver side)
Zrs Transfer impedance matrix of the mounts
Zsr Transfer impedance matrix of the mounts
Zss Driving point impedance matrix of the mounts (source side)
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Greek

β Shear angle of cross-section during bending beam [rad]
η Structural loss factor [-]
ηn Ad hoc modal damping coefficient [-]
θ Angle of rotation [rad]
λ Stretch ratio [-]
Λn modal volume of nth mode shape
ν Poisson’s ratio [-]
Ξm Modal damping matrix
ρ Structural density [kg/m3]
ρ0 Mean density of fluid [kg/m3]
ϕn(x, y) Function of nth structural mode
Φ Matrix with modal vectors
ψn(~r) nth Acoustic eigenfunction [Pa]
ψ Slope of the deflection curve of a beam without shear effect [rad]
ψ nth Acoustic mode shape vector [Pa]
ω Angular frequency (= 2πf) [rad/s]
ωn nth angular eigenfrequency [rad/s]
Ω Diagonal matrix with angular eigenfrequencies

Mathematical

B → S Deformation from reference config. B to current config. S
· Inner product, first order contraction
A−1 Inverse of matrix A
A+ Pseudo-inverse of matrix A
xH Hermitian of vector x (complex conjugated transposed)
xT Transpose of vector x
j =

√
−1 Imaginary unit

I Identity matrix
~∇ Gradient operator
Σ Summation
∇2 Differential operator
ℜ( ) Real part
ℑ( ) Imaginary part
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x∗ Complex conjugate of x
ẋ Time derivative of x
x
˜

Measured or disturbed x

X̂ Regularized or reduced reconstruction of X

Abbreviations

ASAC Active Structural Acoustic Control
AVC Active Vibration Control
BEM Boundary Element Method
DMA Dynamic Mechanical Analyzer
DMTA Dynamic Mechanical Thermal Analyzer
IRHD International Rubber Hardness Degrees
DOF(s) Degree(s) Of Freedom
DSM Dynamic Stiffness Matrix
DSP Digital Signal Processing
FEM Finite Element Method
MIMO Multiple Input, Multiple Output
NR Natural Rubber
phr Part per hundred rubber
SEA Statistical Energy Analysis
SISO Single Input, Single Output
SMR Standardized Malaysian Rubber
SPL Sound Pressure Level
SVD Singular Value Decomposition
TSVD Truncated Singular Value Decomposition
WLF William-Landel-Ferry equation



Appendix A

Energy analysis of a one-DOF
oscillator

An important error criterion for active isolation is the transmitted power in a
structure. The transmitted power represents the energy flow that is caused by
the dissipation mechanisms in the receiver structure. These dissipation mech-
anisms are the structural damping in the receiver and the damping caused by
the fluid-structure interaction of the receiver with the surrounding environ-
ment. The fluid-structure interaction causes noise, that is quantified as the
radiated sound power. To explain the physical meaning of the cost function
that minimizes transmitted power, the energy contents of a simple one-degree-
of-freedom oscillator will be analyzed in more detail, see Figure A.1(a).

When it is assumed that the oscillator is excited by a harmonic force
f(cosωt+ j sinωt) the displacement is given by:

x =
f (cosωt+ j sinωt)

−mω2 + jωc+ k
. (A.1)

The considered system is nonconservative, which means that energy is dis-
sipated within the system. In that case the total energy of the system is
subdivided into four separate contributions: the kinetic energy Ekin, the po-
tential energy Epot, the dissipated energy Edis and the energy input Ein. The
relation between these energies is determined by [85]:

d

dt
(Ekin + Epot) = fncẋ, (A.2)

which states that the rate of work performed by the nonconservative force fnc

is equal to the rate of change of the systems total energy. The energy contents
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Figure A.1: Energy contributions as a function of the time for a one-DOF oscillator: the
potential energy, the kinetic energy, the dissipated energy and the energy input.

on time t are determined by:

Ekin =

∫ t

0
mℜ(ẍ)ℜ(ẋ) dt Epot =

∫ t

0
kℜ(x)ℜ(ẋ) dt, (A.3)

Edis =

∫ t

0
cℜ(ẋ)ℜ(ẋ) dt Ein =

∫ t

0
F cosωtℜ(ẋ) dt. (A.4)

The energies are depicted in Figure A.1(b) for three vibration cycles, when
the oscillator is excited with a frequency equal to twice the eigenfrequency of
the undamped system. It is seen that the mean value of conservative energies
Ekin and Epot does not change, while the mean level of the energy input Ein

and dissipated energy Edis oscillates with an increasing linear mean value in
time. Integration of equation (A.2) for t = 0 to t = t yields:

Ekin + Epot = Ein − Edis, (A.5)

which states that the total energy on time t is equal to the net energy trans-
port into the system. In Figure A.2 this is shown for the oscillator. From
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Figure A.2: The total energy Ekin + Epot as function of the time and the net energy
input for the one-DOF oscillator.

Figure A.1(b) it can be seen that after one period the dissipated energy level
is the same as the energy input by the force. The amplitude of the harmonic
transmitted power is thus equal to the dissipated energy. This means that
minimization of the transmitted power reduces the rate of change of the total
energy of the system, which equals to the reduction of the sum of the kinetic
and potential energy.



232 Energy analysis of a one-DOF oscillator



Appendix B

Global response:
minimization of energy

The kinetic and potential energies of a structure are measures for the global
response of the system. The kinetic energy especially is a useful measure to
judge the global vibrational response of a structure and to value the perfor-
mance of the active isolation system in a global sense. The error criteria that
minimize the kinetic and potential energies are explained in this appendix in
more detail. A procedure is described to determine the energy content without
making use of the mass and stiffness matrix from the FEM analysis.

The amplitude of the kinetic energy Ekin in the frequency domain is defined
as:

Ekin =
1

2
vH

tot · M · vtot, (B.1)

where vtot is a vector with the velocities at all DOFs of the numerical model of
the receiver structure and M is the mass matrix of the finite element model.
This mass matrix is square and has a size equal to the number of DOFs
of the model. For complex receiver structures like the numerical model of
the laboratory setup considered in this thesis, the number of DOF is large
which results in large computation times (when the energy contents of the
structure has to be determined). The global response is determined by a
mobility matrix and the forces at the junctions of the mounts with the receiver
structure according to:

vtot = Yrec · fr, (B.2)

where Yrec is the mobility matrix from all the forces at the junctions to all
velocity components on the receiver structure. The force vector fr is a function
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of the disturbance force vector and actuator force vector according to:

fr = Hp · fd + Hs · fa, (B.3)

where Hp is the primary transfer path and Hs is the secondary transfer path,
as shown in equations (2.30e) and (2.31). Substitution of equations (B.1)
and (B.2) into the expression for the kinetic energy (B.3) yields:

Ekin =
1

2
(Hp · fd + Hs · fa)H YH

rec · M · Yrec · (Hp · fd + Hs · fa) . (B.4)

The mobility matrix Yrec is determined by a modal expansion of the receiver
structure as described in section 4.3.2. When the influence of the residual
mode is omitted in the expansion, the mobility matrix can written as:

Yrec = jωΦ · Q, (B.5)

where Φ is a matrix with the structural modes and Q a matrix with modal
participations for each connection DOF at the junctions. Substitution of equa-
tion (B.5) into the expression for the kinetic energy results in:

Ekin = −1

2
ω2 (Hp · fd + Hs · fa)H QH ·ΦH ·M ·Φ ·Q (Hp · fd + Hs · fa) . (B.6)

With the eigenmodes being normalized with respect to the mass matrix M
(see equation (4.6)) this equation reduces to:

Ekin = −1

2
ω2 (Hp · fd + Hs · fa)H QH · I · Q (Hp · fd + Hs · fa) , (B.7)

where I an identity matrix. In a similar way, the potential energy can be
determined:

Epot =
1

2
(Hp · fd + Hs · fa)H QH · ΦH · K · Φ · Q (Hp · fd + Hs · fa) , (B.8)

which can be rewritten with the help of equation (4.6) in:

Epot =
1

2
(Hp · fd + Hs · fa)H QH · Ω2 · Q (Hp · fd + Hs · fa) . (B.9)

The kinetic and potential energy are determined with only the modal par-
ticipations and without the influence of the residual flexibility term. The
residual term is only considerable near the points of excitation of the struc-
ture, but its contribution to the total response of the structure is negligible.



Appendix C

Singular Value Decomposition

A particular useful tool for analyzing Frequency Response Functions (FRFs)
is the Singular Value Decomposition (SVD) [45]. This tool is used in different
fields, e.g. the inversion of ill-conditioned matrices [50, 137] and in the field of
structural active structural acoustic control to relate structural sensors to the
desired acoustic response with reduction of information [19, 42].

Considering a transfer matrix H of size m× n, the SVD of this matrix is
written as:

H = U · S · VH =
∑

i

uisiv
H
i . (C.1)

The matrix U is of dimensions (m × m), S is of size (m × n) and V is of
size (n × n). The matrices U and V are unitary matrices: UH · U = Im and
VH ·V = In. The matrices U and V contain the left and right singular vectors
ui and vi, respectively:

U =
[
u1 u2 · · · um

]
V =

[
v1 v2 · · · vn

]
. (C.2)

The real and positive singular values si are collected on the diagonal of matrix
S, for i = 1, 2, ...,min (m,n) in decreasing order such that s1 ≥ s2 ≥ · · · ≥
smin(m,n) ≥ 0.

When the SVD analysis is used for the decomposition of the matrix with
FRFs of dynamic or acoustic problems, the left and right singular vectors can
be interpreted in a physical way as a sort of ‘modal’ representation. The left
singular vectors represent the so-called field shapes or field modes and are
patterns or modes of preferable responses of the structure. The right singular
vectors are the so-called source shapes or source modes and can be interpreted
as patterns of excitations in which the structure responds preferably. The
contribution of each field shape and corresponding mode shape to represent
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H is uniquely determined by the corresponding singular value. There is only
coupling between a field shape ui and source shape vj for i = j while the
most efficient coupling takes place for the case i = 1 because of the largest
corresponding singular value.

C.1 Radiation modes of a baffled rectangular plate

An example of the use of the SVD analysis can be found in the field of ASAC
(Active Structural Acoustic Control). In this field, the goal is reduction of
an acoustic response radiated by the structure by influencing the structural
vibrations with the help of actuators in combination with a controller. When
structural error sensors are used instead of acoustic error sensors (e.g. ac-
celerometers or piezoelectric sensors), the structural sensor response has to
be weighted in order to obtain an acoustic measure e.g. the radiated sound
power. In this section the SVD analysis is used to investigate the radiated
sound power of a baffled plate into the free field [26, 42]. The same configu-
ration is considered as for the described plate-structure in section 2.5.3 with
the properties shown in Table 2.3.

The radiated sound power can be written as:

W̄ = vH
n · R · vn, (C.3)

where R is the radiation resistance matrix, which is shown in equation (2.48)
for the free field radiation of a baffled plate. The vector vn is the veloc-
ity response of the plate in the normal direction. The radiation matrix can
consequently be decomposed according to:

R = U · S · VH, (C.4)

where U and V are the left and right singular vectors respectively and are
equal to each other due to the symmetry of the radiation matrix. Substitution
of equation (C.4) into equation (C.3) results in:

W̄ = a · S · aH =
∑

i

si|ai|2, (C.5)

where a = vH
n ·U is the resulting vector when the normal velocity distribution

is mapped on the field shapes. This equation shows that the radiation modes
contribute independently to the radiated sound power.

The radiation matrix R is frequency dependent, which means that the
radiation modes also depend on the frequency. In Figure C.1 the first six ra-
diation modes are shown for the dimensionless frequency kLy = 0.2. At this
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(a) (b) (c)

(d) (e) (f)

Figure C.1: Radiation modes at kLy = 0.2.

frequency the acoustic wavelength is larger than the largest plate length. In
Figure C.2 the first six efficient radiation modes are shown at a dimensionless
frequency of kLy = 2π, a frequency where the acoustic wavelength is equal
to the largest dimension of the plate. The radiation modes change slightly in
shape, which is most clearly visible for the first radiation mode. The velocity
distribution that radiates the sound most efficiently at low frequencies is the
uniform piston movement with a large volume displacement as shown in Fig-
ure C.1(a). At higher frequencies, the most efficient radiation mode changes
from a uniform piston movement to one with rounded edges (‘dome’ shaped).

The singular values, a measure for the efficiency of the contributions of the
radiation modes to the radiated sound power, are plotted as a function of the
frequency in Figure C.3(a). At low frequencies just a few singular values have
a large value, meaning that just a few radiation modes contribute significantly
to the total radiated sound power. This is also shown in Figure C.3(b), where
the radiated sound power is depicted when only four radiation modes are taken
into account for the approximation. This approximation works quite well up
to a frequency range of kLy = π. At higher frequencies, kLy ≫ π, a large
number of modes becomes efficient and it is difficult to distinguish between
‘weak’ and ‘strong’ radiation modes. Hence the radiation mode approach has
no advantage in terms of data reduction and provides no useful information.
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(a) (b) (c)

(d) (e) (f)

Figure C.2: Radiation modes at kLy = 2π.
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Figure C.3: The singular values of the radiation matrix (a) and the approximated radiated
sound power with account of the first four radiation modes (b).
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The property that the radiated sound power is dominated by just a few ra-
diation modes in combination with the property that each radiation mode
contributes independently to the radiated sound power makes this approach
useful for application in ASAC at low frequencies. When the vibrational sensor
response is weighted in such a way that the contributions of the most efficient
radiation modes are ‘sensed’, one is assured of a reduction of the radiated
sound power. The idea of using so-called radiation filters was introduced by
Baumann et al. [4]. The use of the radiation modes as radiation filters was
introduced by Gibbs et al. and explained with the example of the radiation
of a baffled plate [42]. Further literature concerning characteristic properties
of radiation modes can be found in references [17, 18, 25, 26, 27, 107]. In
the field of ASAC, the radiation modes is also an important subject in the
literature, e.g. [3, 11, 12, 42, 94]. Similar techniques can be used for radiation
into enclosures as shown by Cazzolato [14, 21].

C.2 Regularization

A problem that is often encountered in engineering problems, is ill-behavior of
the inverse problem that is considered. When a problem is considered that is
described by FRFs, it is common to write this in terms of a discrete transfer
matrix approach according to:

H · x = b, (C.6)

where the transfer matrix H relates the input vector x (cause, e.g. forces) to
an output vector b (effect, e.g. accelerations). In a forward problem the input
vector x is known and a solution of the output vector b is sought. In inverse
problems the challenge is to obtain a meaningful solution of the unknown
original input x of the system for a known output vector b. The vector
b and or the transfer matrix H is commonly obtained from measurements.
Equation (C.7) can be rewritten for this case as:

H
˜
· x
˜

= b
˜
, (C.7)

where H
˜

is the measured FRF matrix, b
˜

is the measured actual response and x
˜is the reconstructed input vector. When the system shown in equation (C.7)

arises from an ill-posed problem, the transfer matrix is ill-conditioned and
standard inversion techniques fail to obtain a physically meaningful approxi-
mation of x

˜
. The ill-conditioned transfer matrix amplifies the small measure-

ment errors in the vector b
˜

in such a way that the solution of the vector x
˜

has
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no physical meaning. The reconstructed input vector can contain large errors
introduced by a combination of an ill-conditioned FRF matrix and the errors
in the measurement of the operational responses (b

˜
) and the FRFs (the com-

ponents of H
˜

). Regularization techniques are used to prevent the solution of
x of a discrete ill-posed problem becoming dominated by contributions arising
from noise in the right-hand side vector b. A particularly useful numerical
tool for the analysis of ill-conditioned problems is the SVD since it reveals all
difficulties associated with the ill-conditioning of matrix H [45, 50].

The condition number of H
˜

equals the ratio of the largest and smallest
singular values s1/smin(m,n). This ratio is a measure for the sensitivity of
the solution to perturbation errors in H

˜
or the right-hand side b

˜
; i.e. a high

condition number of the transfer matrix indicates that ill-conditioned behavior
may occur during inversion. In order to prevent this undesirable behavior, a
class of regularization tools are available to produce a regularized solution.
When the transfer matrix H

˜
is decomposed with an SVD, the equation can

be written as:

b
˜

= U
˜
· S
˜
· V
˜

H · x
˜
, or in components, b

˜
=
∑

i

s
˜i(v˜

H
i · x
˜
)u
˜i. (C.8)

The solution of the inverse problem to determine the vector x can now be
determined according to:

x
˜

=
∑

i

u
˜

H
i · b
˜

s
˜i

v
˜i. (C.9)

In order to overcome the undesirable behavior of the amplification of noise in
the right-hand side vector b

˜
, the regularization techniques produce a regular-

ized solution in the form:

x̂
˜

=
∑

i

fi
u
˜

H
i · b
˜

s
˜i

v
˜i, (C.10)

where fi are known as the filter factors. In order to effectively apply regulariza-
tion, these filter factors must have the important property that for decreasing
values of s

˜i the corresponding factor fi approaches zero in such a way that
the contributions (u

˜
H
i · b
˜
/s
˜i)v˜i are filtered out for the smaller s

˜i. There are
different kinds of regularization techniques like Truncated Singular Value De-
composition (TSVD), Tikhonov regularization and iterative methods. In this
work, only the TSVD technique is used.

Once it is known that the ill-conditioned behavior is related to the smallest
singular values s

˜i, the most straightforward method is to reject the contribu-
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tions corresponding with the smallest singular values:

x̂
˜

=
k∑

i

u
˜

H
i · b
˜

s
˜i

v
˜i, with k ≤ min(m,n), (C.11)

or, in terms of the filter factors:

x̂
˜

=
∑

i

fi
u
˜

H
i · b
˜

s
˜i

v
˜i, with fi =

{
1, if i ≤ k
0, if k < i ≤ min(m,n).

(C.12)

This technique is known as TSVD. The truncation eliminates the influence of
all singular vectors v

˜i associated with singular values smaller than s
˜k. When

the truncation number k is chosen carefully and sufficiently, the regularized
solution x̂

˜
is stable and smooth. The condition number for the regularized

transfer matrix, given by s
˜1
/s
˜k, increases when the number of rejected singular

values increases. However, a too low number of k results in an over-regularized
solution. And a too high number of k results in instable behavior due to
under-regularization. The most optimal number of k is thus a trade-off and
over-regularization or under-regularization has to be avoided. The problem is
how to estimate the threshold value for the rejection of the singular values. In
references [56, 57] norms of the FRF response matrix or operational response
vector were adopted with varying degree of success. In references [129, 130]
also more advanced techniques are treated such as Tikhonov regularization
and iterative inversion.
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Appendix D

Analytical formulation

In this appendix the dynamic behavior of the three isolation components
(source, mounts and receiver) are described and analyzed in more detail. The
analytical models for the mounts and receiver are compared with numerical
results obtained with the finite element package Ansys.

D.1 Dynamics of a rigid body

In general, the source of vibration in models of active isolation systems a rigid
mass with external disturbance forces. Consider a rigid mass as depicted in
Figure D.1. The excitation forces are assumed to act in the center of gravity
(c.o.g.) of the rigid mass. Also a junction point of the connection between
a mount and the source is depicted with its displacement components. The
same sign convention is used for the force vector at this connection point. The
analysis is performed in the frequency domain. The velocities at the mount
location vs can be expressed as a function of the velocities in the center of

u v

w θx

θy
θz

x

yz
c.o.g.

lcla

lb

Figure D.1: Sign convention for the rigid body.
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gravity of the rigid mass vg according to:

vs = Vsg · vg, (D.1)

where:

Vsg =




1 0 0 0 lc −lb
0 1 0 −lc 0 la
0 0 1 lb −la 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



. (D.2)

In a similar way the forces at a junction of the source connection with a mount
fs are expressed as a force vector acting at the center of gravity fg of the source
according to:

fg = Fgs · fs, (D.3)

where:

Fgs =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −lc lb 1 0 0
lc 0 −la 0 1 0
−lb la 0 0 0 1



. (D.4)

The equations of motion for the rigid body mass can now be written as:

fg + fd = jωMg · vg, (D.5)

where fd is the vector with disturbance forces acting on the rigid mass. The
mass matrix Mg can be written as

Mg =




m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz



, (D.6)

where m is the mass of the rigid body and I is the rotary moment of inertia.
Now the velocities at the mount location can be written in terms of the dis-
turbance forces fd and the forces at the mount location fs with corresponding
mobility matrices resulting in:

vs = Ysd · fd + Yss · fs, (D.7)
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where:

Ysd = Vsg · (jωMg)
−1 Yss = Vsg · (jωMg)

−1 · Fgs. (D.8)

D.2 Dynamics of a beam

The mounts are modeled as beams for which three types of vibrations are
distinguished: longitudinal or axial vibrations, bending of flexural vibrations
and torsional vibrations.

D.2.1 Bending vibrations with shear and inertia effects

For bending vibrations it is often assumed that the beam is slender, which
means that the length of the beam is large in comparison with its cross-
sectional dimensions. For slender beams the deflection as consequence of shear
can be neglected (the so-called Euler beam). However, for isolation purposes
the mount supports are often short and for this reason not slender. The influ-
ence of shear effects may be considerable for slender beams and are therefore
taken into account. Also the influence of the rotary inertia is taken into ac-
count, which may have considerable influence at higher frequencies.

ψ1

w1 ψ2

w2

x

z

Figure D.2: A beam element with the sign convention for bending vibration.

Consider a beam element as depicted in Figure D.2. The dynamic behavior of
the beam element is described as a function of the variables at the nodal points
1 and 2. The slope of the deflection curve depends not only on the rotation
of the cross sections of the beam but also on the shearing deformation. The
total slope of the deflection curve is:

∂w

∂x
= ψ + β, (D.9)

where ψ is the slope of the deflection curve when the shearing force is neglected
and β is the angle of shear at the neutral axis in the same cross section.

The bending moment and shearing force are:

M = EI
dψ

dx
V = −ksβAG, (D.10)



246 Analytical formulation

where G is the modulus of elasticity in shear, I is the area moment of inertia
and ks is a shape factor for shear depending on the geometry of the cross-
section. The nodal DOF vector wb and the nodal load vector fb in terms of
the degrees of freedom related with the bending of the beam are defined as:

wb =





w1

ψ1

w2

ψ2





fb =





V1

M1

V2

M2




, (D.11)

where w1 and ψ1 are the displacement and rotation as consequence of the
deflection at node 1, respectively, and V1 and M1 are the corresponding nodal
shear force and bending moment.

The equation of motion of a so-called Timoshenko beam (including shear
and rotary inertia effects) can be written as [131]:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 +

E

ksG

)
∂4w

∂x2∂t2
+
ρ2I

ksG

∂4w

∂t4
= 0. (D.12)

Assuming a harmonic excitation of the form w(x, t) = w(x)ejωt where ω is the
angular frequency, the equation of motion becomes:

∂4w

∂x4
+ c2

∂2w

∂x2
− c1w = 0, (D.13)

where:

c1 =
1

EI

(
ω2ρA− ω4ρ2I

ksG

)
, (D.14)

c2 =
ω2ρ

E

(
1 +

E

ksG

)
. (D.15)

The general solution of the homogeneous equation (D.13) is:

w = C1e
n1(x−L) + C2e

−n1x + C3e
n2(x−L) + C4e

−n2x, (D.16)

where C1 to C4 are the integration coefficients, and n1 and n2 are defined as:

n1 =
1

2

√
−2c2 + 2

√
c22 + 4c1,

n2 =
1

2

√
−2c2 − 2

√
c22 + 4c1.

(D.17)
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The nodal DOF vector wb can be calculated in terms of the integration coef-
ficients at the nodal locations x = 0 and x = L with L the length of the beam
element:

wb = G · c , (D.18)

where:

G =




e−n1L 1�
−ksAG−EI

�
n2

1+ ω2ρ
ksG

��
n1e−n1L

ω2ρI−ksAG

ksAGn1−EIn1

�
−n2

1−
ω2ρ
ksG

�
ω2ρI−ksAG

1 e−n1L

−ksAGn1−EIn1

�
n2

1+ ω2ρ
ksG

�
ω2ρI−ksAG

�
ksAG−EI

�
−n2

1−
ω2ρ
ksG

��
n1e−n1L

ω2ρI−ksAG

· · ·

e−n2L 1�
−ksAG−EI

�
n2

2+ ω2ρ
ksG

��
n2e−n2L

ω2ρI−ksAG

ksAGn2−EIn2

�
−n2

2−
ω2ρ
ksG

�
ω2ρI−ksAG

1 e−n2L

−ksAGn2−EIn2

�
n2

2+ ω2ρ
ksG

�
ω2ρI−ksAG

�
ksAG−EI

�
−n2

2−
ω2ρ
ksG

��
n2e−n2L

ω2ρI−ksAG




, (D.19)

and:

c =





C1

C2

C3

C4




. (D.20)

In the same way the forces can be related with the integration coefficients
according to:

fb = H · c. (D.21)
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The matrix H can be calculated with equations (D.10) resulting in:

H =




−ksAG

 
1 −

−ksAG−EI

�
n2

1
+ ω2ρ

ksG

�
ω2ρI−ksAG

!
n1e

−n1L

−EIe−n1L
�
n2

1 + ω2ρ

ksG

�
ksAGn1

 
1 −

−ksAG−EI

�
n2

1
+ ω2ρ

ksG

�
ω2ρI−ksAG

!
EI
�
n2

1 + ω2ρ

ksG

� · · ·

−ksAGn1

 
−1 −

ksAG−EI

�
−n2

1
− ω2ρ

ksG

�
ω2ρI−ksAG

!
−EI

�
n2

1 + ω2ρ

ksG

�
ksAG

 
−1 −

ksAG−EI

�
−n2

1
− ω2ρ

ksG

�
ω2ρI−ksAG

!
n1e

−n1L

EIe−n1L
�
n2

1 + ω2ρ

ksG

� · · ·

−ksAG

 
1 −

−ksAG−EI

�
n2

2
+ ω2ρ

ksG

�
ω2ρI−ksAG

!
n2e

−n2L

−EIe−n2L
�
n2

2 + ω2ρ

ksG

�
ksAGn2

 
1 −

−ksAG−EI

�
n2

2
+ ω2ρ

ksG

�
ω2ρI−ksAG

!
EI
�
n2

2 + ω2ρ

ksG

� · · ·

−ksAGn2

 
−1 −

ksAG−EI

�
−n2

2
− ω2ρ

ksG

�
ω2ρI−ksAG

!
−EI

�
n2

2 + ω2ρ

ksG

�
ksAG

 
−1 −

ksAG−EI

�
−n2

2
− ω2ρ

ksG

�
ω2ρI−ksAG

!
n2e

−n2L

EIe−n2L
�
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2 + ω2ρ

ksG

�



. (D.22)

With the equations (D.18) and (D.21) the following relation between the nodal
forces and displacements can be derived:

fb = H · G−1 · w. (D.23)
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In this equation the matrix product H ·G−1 defines the relation between the
dynamic force and the dynamic displacements in the nodes and is called the
dynamic stiffness matrix. Equation (D.23) can be rewritten as:





V1

M1

V2

M2





=

[
kb

11 kb
12

kb
21 kb

22

]
·





w1

ψ1

w2

ψ2




. (D.24)

The matrices kb
11 and kb

22 are the blocked dynamic driving point matrices
related with the bending of the beam at node 1 and 2 respectively and relate
the nodal forces with its own nodal displacements. The matrices kb

12 and kb
21

are the blocked dynamic transfer bending stiffness matrices relating the forces
in one node to the displacements of the other node. For the beam depicted in
Figure D.2 the bending in the x− z plane can be written in terms of the total
dynamic stiffness matrices:

fb =




k11(3, 3) k11(3, 5) k12(3, 3) k12(3, 5)
k11(5, 3) k11(5, 5) k12(5, 3) k12(5, 5)
k21(3, 3) k21(3, 5) k22(3, 3) k22(3, 5)
k21(5, 3) k21(5, 5) k22(5, 3) k22(5, 5)


 · wb. (D.25)

In the same way the bending of the beam in the x−y plane can be determined
according to:

fb =




k11(2, 2) k11(2, 6) k12(2, 2) k12(2, 6)
k11(6, 2) k11(6, 6) k12(6, 2) k12(6, 6)
k21(2, 2) k21(2, 6) k22(2, 2) k22(2, 6)
k21(6, 2) k21(6, 6) k22(6, 2) k22(6, 6)


 · wb. (D.26)

Structural damping can be introduced by assuming a complex elasticity
modulus [23] according to:

E = E′ + jE′′ = E′(1 + jη), (D.27)

where η is the structural loss factor of the material, E′ and E′′ are the real
and imaginary part of the modulus of elasticity respectively.

D.2.2 Longitudinal vibration

In the same way as described for the bending deformation, the dynamic stiff-
ness matrix for longitudinal vibrations can be derived. The sign convention
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u1 u2

x

Figure D.3: A beam element with the sign convention for longitudinal vibration.

is shown in Figure D.3. The nodal variables are written in a vector according
to:

u =

{
u1

u2

}
fn =

{
N1

N2

}
, (D.28)

where u1 and u2 are the axial displacements at nodes 1 and 2, respectively,
and N1 and N2 are the corresponding nodal shear forces. The equation of
motion for longitudinal vibrations is:

EA
∂2u

∂x2
−m

∂2u

∂t2
= N, (D.29)

where E is the Young’s modulus, A is the cross-sectional area and m is the
mass per unit length, all assumed to be independent on coordinate x. The
homogeneous form of the equation of motion can be solved in the frequency
domain which yields the general displacement function:

w = C1 sin(klx) + C2 cos(klx), (D.30)

where kl the longitudinal wave number defined as:

kl =

√
ω2

m

EA
. (D.31)

In the same way as described for the bending vibrations, the relations between
the nodal displacements and the integration constants can be derived, which
yields:

G =

[
0 1

sin(klL) cos(klL)

]
, (D.32)

With help of the relation:

N = EA
du

dx
, (D.33)

the relation between the nodal axial forces and the integration constants can
be derived, which yields:

H = EAkl

[
−1 0

cos(klL) − sin(klL)

]
. (D.34)
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The relation between the nodal forces and displacements can again be calcu-
lated according to:

fn = H · G−1 · u. (D.35)

In terms of the total dynamic stiffness matrix, equation (D.45) is written as:

fn =

[
k11(1, 1) k12(1, 1)
k21(1, 1) k22(1, 1)

]
· u. (D.36)

D.2.3 Torsional vibration

The sign convention to describe the torsional vibration in a beam is described
in Figure D.4. The nodal variables are written in a vector according to:

θ1 θ2

x

Figure D.4: A beam element with sign convention for torsional deformation.

θ =

{
θ1
θ2

}
t =

{
T1

T2

}
, (D.37)

where θ1 is the torsional rotation angle and T1 is the torsional moment on
node 1. The equation of motion for torsional vibrations is:

GJ
∂2θ

∂x2
− Imp

∂2θ

∂t2
= T, (D.38)

where G is the shear modulus, J is the polar moment of inertia of the cross-
sectional area and Imp is the mass polar moment of inertia per unit length.
The defined parameters are assumed to be independent of x. The general
solution of the equation of motion in the frequency domain is:

θ = C1 sin(kt)x+ C2 cos(ktx), (D.39)

where kt is the torsional wave number defined as:

kt =

√
ω2

ρ

G
. (D.40)
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The relation between the nodal displacements and the integration constants
can be determined again, resulting in:

G =

[
0 1

sin(ktL) cos(ktL)

]
. (D.41)

With use of the relation:

T = GJ
dθ

dx
, (D.42)

the nodal torsional moments can be expressed as function of the integration
constants resulting in:

H = GJ kt

[
−1 0

cos(ktL) − sin(ktL)

]
. (D.43)

The relation between the torsional moments and rotations can be calculated
with:

t = H · G−1 · θ. (D.44)

In terms of the total dynamic stiffness matrix, equation (D.45) can be written
as:

t =

[
k11(4, 4) k12(4, 4)
k21(4, 4) k22(4, 4)

]
· θ. (D.45)

D.2.4 Example and comparison with FEM

The derived analytical expressions are used to determine the dynamic behavior
of an example beam and the results are compared with mobilities calculated
with a harmonic analysis in the finite element package Ansys. Consider a
square beam with material properties and dimensions as defined in Table D.1.
In Figure D.5 the driving point stiffness component k11(2, 2) from lateral force

Parameter Value

Density 1000 kg/m3

Modulus of elasticity 1 · 107 N/m2

Poisson’s ratio 0.33

Dimensions (b× h× L) 0.01 × 0.01 × 0.1 m3

Structural loss factor 0.01

Table D.1: Parameters for the considered beam example.
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to lateral displacement and the transfer point stiffness k11(2, 6) from lateral
force to rotation are depicted. The analytical results agree very well with the
numerical solution determined in Ansys. The influence of the shear effects
and rotary inertia are considerable. In Figure D.6 the driving point stiffness
k11(1, 1) in axial direction and the torsional driving point stiffness k11(4, 4) are
shown.
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Figure D.5: Different components of the dynamic stiffness concerning the bending de-
formation.

D.2.5 Impedance matrices

The dynamics of the mount are described in equation (4.1) with the help of
an impedance matrix approach:

{
fms

fmr

}
=

[
Zss Zsr

Zrs Zrr

]
·
{
vms

vmr

}
+

[
Tas

Tar

]
· fa. (D.46)

The impedance matrices are related with the described dynamic stiffness ma-
trices by:

Zss = jω k11 Zsr = jω k12, (D.47)

Zrs = jω k21 Zrr = jω k22, (D.48)

where 1 indicates the source side and 2 the receiver side of the mounts in terms
of the dynamic stiffness matrix formulation.
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Figure D.6: Different components of the dynamic stiffness concerning the bending de-
formation.

D.3 Analytical model of a simply supported plate

The receiver structure is modeled as a simply supported plate with a mobility
description. An approximate dynamical model is derived for transverse and
in-plane vibrations of a plate and the following assumptions are used:

• The vibration amplitudes are assumed to be small and therefore the
transverse and in-plane vibrations are uncoupled with respect to each
other.

• Kirchhoff hypothesis: a plane through the plate and perpendicular to
the mid-plane of the plate remains straight and perpendicular to the
mid-plane when deformed.

• Thin plate assumption: the shear and rotary inertia effects are neglected.

The dynamic stiffness matrix method was used to describe the dynamics of
a beam, but this method can not be used for plate-like structures because
no exact solution of the governing equation of motion exists. For this reason
the so-called modal superposition method is used. This approximate method
gives a good result for the dynamic behavior at relatively low frequencies with
a relatively low modal density. The transfer functions are expressed in terms
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of a mobility matrix Y according to:

v = Y · f , (D.49)

where the velocity vector v contains the velocities at different locations for
the forces present in the force vector f .

vj =





u̇
v̇
ẇ

θ̇x

θ̇y

θ̇z





j

fk =





fx

fy

fz

mx

my

mz





k

. (D.50)
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Figure D.7: Sign convention used for the calculation of the plate mobility.

The total dynamics of the receiver plate is split into transverse vibrations,
in-plane vibrations and torsional vibrations. The torsional vibrations are not
considered. In the end the derived analytical expressions are validated with
numerical results obtained with Ansys.

D.3.1 Transverse vibrations

The harmonic equation of motion of a plate in the normal direction of a plate
can be written as [23]:

B(1 + jη)

(
∂4w(x, y)

∂x4
+
∂4w(x, y)

∂x2∂y2
+
∂4w(x, y)

∂y4

)
− ρhω2w(x, y) = fz(x, y),

(D.51)
where B is the bending stiffness of the plate, η is the structural loss factor,
w(x, y) is the displacement in normal direction of the plate, ρ is the density, h
is the thickness and fz(x, y) is the distributed force on the plate. The influence
of the rotary moment of inertia is neglected in the equation of motion, thus
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the plate is considered to be stiff in shear direction. The bending stiffness is
equal to:

B =
E

1 − ν2

h3

12
, (D.52)

where ν is the Poisson’s ratio. The homogeneous solution of equation (D.51)
defines the eigenfunctions (or mode shapes) ϕn(x, y) and the undamped eigen-
frequencies ωn according to:

B(1 + jη)

(
∂4ϕn(x, y)

∂x4
+
∂4ϕn(x, y)

∂x2∂y2
+
∂4ϕn(x, y)

∂y4

)
− ρhω2

nϕn(x, y) = 0.

(D.53)
In general the response of a plate can be written in terms of a summation of
the eigenfunctions according to:

w(x, y) =
∞∑

n=1

Wnϕn(x, y). (D.54)

Substitution of equation (D.54) in equation (D.51) yields with substraction
of (D.53):

w(x, y) =
∞∑

n=1

Wnρh(ω
2
n(1 + jη) − ω2)ϕn(x, y) = fz(x, y). (D.55)

Multiplication with ϕm(x, y), integration over the whole area S of the plate
and taking account of the orthogonality relation between the modes yields:

Wn(ω2
n(1 + jη) − ω2)

∫

S
ρhϕ2

n(x, y) dxdy =

∫

S
fz(x, y)ϕn(x, y) dxdy. (D.56)

With combination of equation (D.54) the normal displacement of the plate is
expressed as:

w(x, y) =
∞∑

n=1

ϕn(x, y)

Λn(ω2
n(1 + jη) − ω2)

∫

S
fz(x, y)ϕn(x, y) dxdy. (D.57)

where Λn is the modal mass of mode n, which is defined as:

Λn =

∫

S
ρhϕ2

n(x, y)dxdy. (D.58)

With the defined expression the mobility matrix for the plate can be de-
rived. For a point force fz at location (x0, y0) the excitation term in equa-
tion (D.58) can be written as [72]:

fz(x, y) = fzδ(x− x0)δ(y − y0), (D.59)
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where δ(x−x0) is the Dirac delta function. The mobility describing the normal
velocity of the plate can now be determined by:

Y (3, 3) =
ẇ

fz
= jω

∞∑

n=1

ϕn(x, y)ϕn(x0, y0)

Λn(ω2
n(1 + jη) − ω2)

, (D.60)

The relation of the angles of bending with respect to the normal displacement
of the plate is:

θx = ∂w/∂y θy = −∂w/∂x. (D.61)

With help of the angle definitions the following mobilities are determined:

Y (4, 3) =
θ̇x

fz
= jω

∞∑

n=1

∂ϕn(x,y)
∂y ϕn(x0, y0)

Λn(ω2
n(1 + jη) − ω2)

, (D.62)

Y (5, 3) =
θ̇y

fz
= −jω

∞∑

n=1

∂ϕn(x,y)
∂x ϕn(x0, y0)

Λn(ω2
n(1 + jη) − ω2)

. (D.63)

For a point moment excitation in the x-direction located at the coordinates
(x0, y0) the excitation term at the left-hand side can be written as [125]:

f(x, y) =
∂Mx

∂x
δ(x− x0)δ(y − y0). (D.64)

The flexural displacement as result of a point moment excitation in the x-
direction is determined by:

Y (3, 4) =
ẇ

Mx
= jω

∞∑

n=1

ϕn(x, y)∂ϕn(x0,y0)
∂x

Λn(ω2
n(1 + jη) − ω2)

, (D.65)

With equation (D.61) the relations between a point moment excitation and
the angle velocity are:

Y (4, 4) =
θ̇x

Mx
= jω

∞∑

n=1

∂ϕn(x,y)
∂y

∂ϕn(x0,y0)
∂x

Λn(ω2
n(1 + jη) − ω2)

, (D.66)

Y (5, 4) =
θ̇y

Mx
= −jω

∞∑

n=1

∂ϕn(x,y)
∂x

∂ϕn(x0,y0)
∂x

Λn(ω2
n(1 + jη) − ω2)

. (D.67)
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The mobilities for a point moment excitation in the y-direction can be deter-
mined in the same way:

Y (3, 5) =
ẇ

My
= jω

∞∑

n=1

ϕn(x, y)∂ϕn(x0,y0)
∂y

Λn(ω2
n(1 + jη) − ω2)

, (D.68)

Y (4, 5) =
θ̇x

My
= jω

∞∑

n=1

∂ϕn(x,y)
∂y

∂ϕn(x0,y0)
∂y

Λn(ω2
n(1 + jη) − ω2)

, (D.69)

Y (5, 5) =
θ̇y

My
= −jω

∞∑

n=1

∂ϕn(x,y)
∂x

∂ϕn(x0,y0)
∂y

Λn(ω2
n(1 + jη) − ω2)

. (D.70)

The mode shapes or eigenfunctions and natural frequencies can be determined
by solving equation (D.53). For a simply supported plate the eigenfunctions
are [15, 23]:

ϕn(x, y) = sin

(
n1π

Lx
x

)
sin

(
n2π

Ly
y

)
, (D.71)

with the corresponding eigenfrequencies:

ωn =

√
B

ρh

[(
n1π

Lx

)2

+

(
n2π

Ly

)2
]
, (D.72)

where the index n represents the double index n1 and n2.

D.3.2 In-plane vibrations

In most cases only the out-of-plane response is considered for the dynamics
in plates. This response is often the most dominant because the flexural or
bending stiffness is much lower than the in-plane stiffness of a plate. However,
for an excitation of a source in all degrees of freedom the plate is also excited
in the in-plane directions. At higher frequencies resonances occur in these
directions which result in a considerable contribution to the transmitted power.

The equations of motion of motion for harmonic excitation forces fx and
fy at a point (x0, y0) in the middle of the plane can be written as [99]:

C2
l

∂2u

∂x2
+ C2

s

∂2u

∂y2
+ (νC2

l + C2
s )

∂2v

∂x∂y
+ ω2u = − fx

ρh
δ(x− x0)(y − y0),

(D.73)

C2
s

∂2v

∂y2
+ C2

l

∂2v

∂x2
+ (νC2

l + C2
s )

∂2u

∂x∂y
+ ω2v = − fy

ρh
δ(x− x0)(y − y0),

(D.74)
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with the sign convention as displayed in Figure D.7. Notice that the two
equations are coupled by the two directions of vibration. The wave speed in
longitudinal direction Cl and in shear direction Cs are defined as:

Cl =

√
E

ρ(1 − ν2)
Cs =

√
E

2ρ(1 + ν)
. (D.75)

For a simply supported or clamped plate, the displacement fields that satisfy
the boundary conditions are assumed to have the form:

u(x, y) =
∞∑

p=1

∞∑

s=1

Aps sin
pπx

Lx
sin

sπy

Ly
ejωt, (D.76)

v(x, y) =

∞∑

p=1

∞∑

s=1

Bps sin
pπx

Lx
sin

sπy

Ly
ejωt. (D.77)

Substitution into equations (D.73) and (D.74), integrating over the area of the
plate and making use of orthogonality properties of the assumed mode shapes
yields [36]:

[(
pπC2

l

Lx

)2

+

(
sπC2

s

Ly

)2

− ω2

]
Aps + (νC2

l + C2
s )
π2

Λ
IBps

=
fx

Λρh
sin

pπx0

Lx
sin

sπy0

Ly
, (D.78)

[(
sπC2

l

Lx

)2

+

(
pπC2

s

Ly

)2

− ω2

]
Bps + (νC2

l + C2
s )
π2

Λ
IAps

=
fy

Λρh
sin

pπx0

Lx
sin

sπy0

Ly
, (D.79)

where Λ = LxLy/4 and:

IAps =
∞∑

q=1

∞∑

r=1

αpq,rsAqr, (D.80)

IBps =
∞∑

q=1

∞∑

r=1

αpq,rsBqr, (D.81)

αpq,rs = − qr

LxLy

∫ Lx

x=0
sin

pπx

Lx
cos

qπx

Lx
dx

∫ Ly

y=0
sin

sπy

Ly
cos

rπy

Ly
dy. (D.82)
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The expression for α can be simplified to:

αps,qr = −qr
[
(−1)p(−1)qp+ p

π(p+ q)(p− q)

] [
(−1)s(−1)rs+ s

π(s+ r)(−s+ r)

]
. (D.83)

The modal participations Aps and Bps are obtained by solving the coupled
set of equations (D.78) and (D.79) for a reduced number of k modes. The
system of equations has a total size of 2 x k x k. With the calculated
modal participations, the in-plane displacements are determined by equa-
tions (D.76) and (D.77) where the assumed mode shapes are summed over
k modes weighted with the modal participations. The equations can be
solved for a unit excitation in the x-direction while maintaining the force in
y-direction zero. With the calculated results of the displacement in x-direction
and y-direction the mobilities Y (1, 1) and Y (2, 1) can be determined. In the
same way the mobilities Y (2, 2) and Y (1, 2) can be determined for a unit force
excitation in y-direction. Structural damping is taken into account by defining
a complex modulus of elasticity.

D.3.3 Example of a receiver plate

To validate the derived analytical expressions, the mobilities are compared
with the mobilities calculated with the finite element package Ansys. Consider
a simply supported plate with the properties as defined in Table D.2.

Parameter Value

Density 2700 kg/m3

Modulus of elasticity 70 · 109 N/m2

Poisson’s ratio 0.33

Dimensions (Lx × Ly × h) 1.2 × 1 × 0.025 m3

Excitation location (x0, y0) (0.4, 0.4) m

Structural loss factor 0.01 [-]

Table D.2: Parameters for the example plate.

In Figure D.8 some mobilities are plotted for three different models: the nu-
merical solution (FEM), the analytical solution with account of a residual
mode and the analytical solution without account of a residual mode. Es-
pecially for the so-called driving point mobilities (the degree of freedom of
response is the same as the excitation degree of freedom and considered in
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the same point as the excitation or in other words the diagonal terms of the
driving point mobility matrix) the influence of the modes in the high-frequency
region is high. The frequency response function of these mobilities can be im-
proved considerably with account of a residual mode as can be seen clearly
in Figure D.8(a) and D.8(c). The point cross mobilities are described quite
well without a residual mode as can be seen in Figure D.8(d). The analyti-
cally determined mobilities agree very well with the results obtained with the
harmonic analysis obtained from Ansys.
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Figure D.8: Different point mobility plots of the plate with the numerical solution, the
analytical solution and the analytical solution with account of a residual mode.
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Figure D.9: Finite element model of the considered hybrid isolation system.

source

receiver

�

mounting system

D.4 Total isolation model: example

With the models of the source, mounts and receiver a total isolation model
can be composed by connecting the subcomponents with each other. An ex-
ample of such an isolation system is shown in chapter 3, where a rigid mass
source is connected to a simply supported plate as receiver structure by four
mounts. The total model is connected at the junctions and ports as described
in chapter 2. In this section, the passive response of the analytical isolation
model is compared to the response calculated with a finite element model of
this isolation system. This FEM model is shown in Figure D.9.

The same model parameters are used as described in Table 3.1 for the
validation, except that the structural loss factor of the mounts is chosen equal
to the loss factor of the receiver (η = 0.01) and the disturbance force is defined
as a unit force in x-, y- and z-directions and a unit moment around the x- and
y-axis in the center of gravity of the source. In Figure D.10 the transmitted
power is plotted as a function of the frequency for both models. As can be
seen the numerical calculated response resembles the analytical response well.
However, for frequencies above 2500 Hz, some deviations can be observed,
caused by a too coarse mesh of the finite element model, but the tendencies
are still comparable.

To give some more insight in the dynamic behavior of the isolation sys-
tem, the first eight peaks in the transmitted power are compared with a modal
analysis and are described in Table D.3. The first three peaks correspond to
modes whose shape show a ‘rigid body’ displacement of the source with the
receiver, whereas all deformation is concentrated in the mounts. The fourth
peak is the first deformation mode of the receiver structure. The fifth peak
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Figure D.10: Passive response of the considered hybrid isolation system in terms of the
transmitted power, determined with the analytical model and with Ansys.

correspond with the first resonance in the mounting system. Already in the
first frequency band of 500 Hz a lot of different deformation shapes of the iso-
lation system are present: global rigid body motion of the source, resonance
frequencies in the mounting system and deformation modes in the receiver
plate. This variety in dynamic behavior also occurs in realistic isolation sys-
tems and therefore this model is considered to be more realistic than the simple
oscillator models.

Ind. Freq. [Hz] Mode description

a 18.8 rigid body mode: translational motion x- and y-direction

b 47.7 rigid body mode: translational motion z-direction

c 76 rigid body mode: rotational motion around x- and y-axis

d 122.2 1-1 mode receiver plate

e 233 2-1 mode receiver plate

f 288 1-2 mode receiver plate

g 401 first bending mode mounts

h 408 2-2 mode receiver plate

Table D.3: Characterization of the first 8 modes of the isolation system.
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Appendix E

FEM modeling of rubber

In this appendix the theory on the finite element modeling of rubber material
is briefly described. The behavior of rubber material is quite complex, and
rubber has the property that it can undergo large elastic deformations. It also
behaves nearly incompressibly, which means that the volume of the material
does not change much during deformation. In this appendix, first the kine-
matics and strain definitions are treated. Then, the strain energy function
is introduced, which is used to describe the behavior of hyperelastic materi-
als such as rubbers. The virtual work equation is consequently introduced,
which is solved by the FEM code in a discretized form. Finally, the theory is
described to perform a frequency domain analysis, following a static analysis.

E.1 Kinematics and strain definition

The kinematics of a deformable body concerns the motion of a material from an
initial configuration (reference configuration) to the final situation. Consider
the vibration isolator depicted in Figure E.1, with a material particle located
at position ~X in the reference configuration B that, after the deformation, is
located at current position ~x in S. The motion of the continuum body is a
mapping of the current configuration on the initial configuration at time t:

ϕt : B → S ∈ R3. (E.1)

Hence, the spatial position ~x for the position ~X ∈ B at time t becomes:

~x = ϕt( ~X) = ϕ( ~X, t). (E.2)

The displacement of a material particle is written as:

265
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~X
~x

B S

Figure E.1: Motion of a material point from the reference configuration B to S.

~u = ~x− ~X. (E.3)

The deformation gradient tensor F relates the current spatial configuration to
the reference configuration:

F =
∂~x

∂ ~X
=




∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3


 . (E.4)

To describe the material behavior it is necessary to have a measure for the
amount of deformation. The definition of the deformation gradient is used for
this purpose:

C = FT · F, (E.5a)

B = F · FT, (E.5b)

where the metric tensors C and B are defined as the right Cauchy-Green
tensor or Cauchy tensor and the left Cauchy-Green tensor or Finger tensor,
respectively. This can be seen more clearly when the deformation of the length
of a current infinitesimal vector d~x is considered:

ds2 = d~x ·d~x =
(
F · d ~X

)
·
(
F · d ~X

)
=
(
FT · F

)
: d ~Xd ~X = C : d ~Xd ~X. (E.6)

Another measure is the so-called stretch ratio, defined as the ratio between
the lengths of d~x and d ~X:

λ =

√
ds2

dS2
=

√
d~x · d~x

d ~X · d ~X
. (E.7)

Considering the deformation gradient tensor in more detail, the length of the
current infinitesimal vector d~x is related to the original infinitesimal vector
d ~X according to:

d~x = F · d ~X. (E.8)
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When the deformation gradient is subjected to an eigenvalue analysis, the
three eigenvalues represent the three principal stretches λ1, λ2 and λ3 and the
three eigenvectors represent the orthogonal principal directions (referred to as
the “Lagrangian triad” or ‘material axes’). Subsequently the eigenvalues of
the Cauchy or Finger tensor can be determined as function of the principal
stretches. The invariants are:

I1 = C11 + C22 + C33 = λ2
1 + λ2

2 + λ2
3, (E.9a)

I2 = C11C22 + C22C33 + C33C11 − C12C21 − C23C32 − C13C31

= λ2
2λ

2
3 + λ2

3λ
2
1 + λ2

1λ
2
2, (E.9b)

I3 = C11C22C33 + 2C12C23C13 − C11C23C32 − C22C13C31

− C33C12C21 = λ2
1λ

2
2λ

2
3. (E.9c)

The principal invariants of B and C coincide and are given by:

I1 = tr(C) = tr(B), (E.10a)

I2 =
1

2
(I2

1 − tr(C2)) =
1

2
(I2

1 − tr(B2)), (E.10b)

I3 = det(C) = det(B), (E.10c)

where det(.) refers to the determinant. The third principal invariant can be
rewritten as:

J =
√
I3 = det(F), (E.11)

where J represents the ratio of the deformed volume over the undeformed
(reference) volume. This expression can be used to determine the deviatoric
stretches:

λ̄ = J−1/3λ, (E.12)

and are thus defined in such a way that these stretches are volume preserving:

J̄ = λ̄1λ̄2λ̄3 = 1. (E.13)

With the definition for J the isochoric deformation gradient can be determined:

F̄ = J−1/3 F, (E.14)

and the isochoric strain tensors can subsequently be written as:

C̄ = F̄T · F̄ = J−2/3C, (E.15a)

B̄ = F̄ · F̄T = J−2/3B. (E.15b)
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With these equations, the first two deviatoric invariants in equations (E.10),
can be determined:

Ī1 = λ̄2
1 + λ̄2

2 + λ̄2
3 = I1I

−1/3
3 = I1J

−2/3, (E.16a)

Ī2 = λ̄2
2λ̄

2
3 + λ̄2

3λ̄
2
1 + λ̄2

1λ̄
2
2 = I2I

−2/3
3 = I2J

−4/3. (E.16b)

In order to derive the finite element equations, the time derivative of the
deformation gradient is needed:

Ḟ =
d

dt

∂~x

∂ ~X
=
∂~v

∂~x
· ∂~x
∂ ~X

=
∂~v

∂~x
· F. (E.17)

With help of this equation the spatial velocity gradient L can be written as:

L =
∂~v

∂~x
= Ḟ · F−1. (E.18)

The velocity gradient can be decomposed into a symmetric part and a skew-
symmetric part:

L = D + W, (E.19)

where D is the symmetric spatial rate of deformation:

D =
1

2

(
L + LT

)
, (E.20)

and W is the skew-symmetric spin tensor:

W =
1

2

(
L − LT

)
. (E.21)

The rate of deformation can again be decomposed in a rate of change of volume
per current volume:

εv = I : D = tr(D), (E.22)

and the deviatoric strain rate:

e = D − 1

3
εvI. (E.23)

Summarizing, the total spatial velocity gradient is:

L = e +
1

3
tr(D) + W. (E.24)
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E.2 Strain energy density functions

The elastic behavior of isotropic hyperelastic material is described by means of
a strain energy function or elastic potential [5, 24, 97]. The strain energy func-
tion determines the strain energy stored in the material per unit of reference
volume. Many different strain energy functions are proposed in the literature.
Some functions describe the strain energy in terms of the strain invariants
whereas other functions are described in terms of the principle stretches. Also
different approaches are chosen with respect to compressibility: sometimes
fully incompressible behavior is assumed and other functions take account of
some compressibility. However, all strain energy functions satisfy certain con-
ditions. In the first place the material is assumed to be isotropic, which implies
that it must be symmetric in terms of the principal stretches (λ1, λ2 and λ3).
Furthermore, the strain energy function must be zero for the undeformed state
and must always be positive for the deformed state. The most simple form
of a strain energy function in terms of the strain invariants that fulfill these
conditions is the following polynomial:

U =
∞∑

p,q,r=0

Cpqr(I1 − 3)p(I2 − 3)q(I3 − 1)r, with C000 = 0, (E.25)

where Cp,q,r are constant factors for p, q, r = 1, 2, 3, ..∞. When further is
assumed that the rubber is incompressible, meaning J = 1 and therefore
I3 = 1, this equation can be rewritten in:

U =
∞∑

p,q=0

Cpq(I1 − 3)p(I2 − 3)q with C00 = 0. (E.26)

The strain invariants can be rewritten in terms of the deviatoric invariants.
However, rubber is to some extent compressible and for this reason a com-
pressible or volumetric term is added to the strain energy function. The most
general polynomial form for isothermal conditions is:

U =
∞∑

p+q=1

Cpq(Ī1 − 3)p(Ī2 − 3)q +
∞∑

p=1

1

Dp
(J − 1)2p , (E.27)

where the Dp values determine the compressibility of the material. The initial
shear modulus G0 and bulk modulus k0 depend only on the coefficients of
order p = 1:

G0 = 2(C10 + C01) k0 =
2

D1
. (E.28)
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A lot of strain energy functions are proposed in the literature and implemented
in commercial finite element packages [52] (e.g. other polynomial expressions
like the Mooney-Rivlin and Neo-Hookean functions and other formulations
like the Ogden, Arruda-Boyce and Van der Waals form). The most common
material used for vibration isolators is carbon black reinforced natural rubber.
The Yeoh form [143], a reduced expression of the general polynomial function,
describes the material behavior of this type of rubber well:

U = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3 +
3∑

p=1

1

D1
(J − 1)2p . (E.29)

The influence of the compressibility is normally not so large, and for this rea-
son often just one term (D1) is taken into account. The latter strain-energy
function is used for the finite element analyses presented in this thesis. The
coefficients are determined with the help of material experiments of defined
samples of the rubber material. Possible tests are uni-axial tension or com-
pression, biaxial tension or compression, planar tension and compression and
volumetric tension and compression. The strain-stress curves of these tests
are used to fit the parameters (for the Yeoh model C10, C20 and C30 and D1)
of the strain energy function.

E.3 Stress definition and virtual work principle

The goal is to find an approximate solution for the displacements, deforma-
tions, stresses, forces and other state variables. The exact solution of the
problem is obtained by demanding both force and moment equilibrium at all
times over any arbitrary volume of the body. The displacement finite ele-
ment method is based on an approximation of this equilibrium, by demanding
that the equilibrium condition be maintained in an average sense over a finite
number of divisions (elements) of the volume of the body; the so-called weak
formulation. This weak formulation of equilibrium must be met for all velocity
fields, resulting in an expression of the virtual work, which can be written for
the ‘virtual’ velocity field δv as [52]:

∫

V
σ : δDdV =

∫

S
δv · tdS +

∫

V
δv · f dV, (E.30)

where σ the ‘true’ or Cauchy stress tensor, t are the surface tractions per
current unit area, f are the body forces per unit current volume and V the
current volume. The term on the left-hand side of the equation represents the
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internal energy variation δWI . The stress tensor can be decomposed into an
equivalent pressure stress p:

p = −1

3
I : σ = −1

3
trσ, (E.31)

and the deviatoric stress:
S = σ + pI. (E.32)

The internal energy variation can subsequently be written as:

δWI =

∫

V0

J(S : δe − pδεv) dV0, (E.33)

where V0 is the reference volume.
The internal energy variation is by definition equal to the variation of the

strain energy potential:

δWI =

∫

V0

J(S : δe − pδεv) dV0 =

∫

V0

δU dV0. (E.34)

With the help of this equation the deviatoric stress tensor can be derived
according to:

S =
2

J
dev

[(
∂U

∂Ī1
+ Ī1

∂U

∂Ī2

)
B̄ − ∂U

∂Ī2
B̄ · B̄

]
. (E.35)

The discretized equilibrium equation (E.30) is nonlinear and is generally
solved with Newton’s method. The discretized formulation of the weak equi-
librium must hold for all virtual velocity fields, resulting in the following vector
equation for each nodal variable:

Fint = Fext, (E.36)

where Fint the internal reaction force vector and Fext the external force vector.
For Newton’s method, the tangent stiffness matrix must be determined for
(each) iteration i:

Ki =
dFint

du

∣∣∣∣
ui

, (E.37)

where Ki is the tangent stiffness matrix and ui is the displacement vector at
iteration i. The tangent stiffness matrix is determined by taking the derivative
of the internal energy.

dδWI =

∫

V

[[
δe δεv

]
:

[
CS Q
Q K

]
:

(
de
dεv

)]

− σ : (2 δε · dε− δLT · dL) dV, (E.38)
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where Cs is the ‘effective deviatoric elasticity’, Q is the coupling term between
the deviatoric stress rate and the volumetric strain rate and K the effective
bulk modulus of the material.

For almost incompressible materials, the described pure displacement for-
mulation can behave poorly. This is due to the fact that the stiffness ma-
trix becomes nearly singular, caused by the numerical problems involved with
the relatively large effective bulk modulus compared to the effective shear
modulus. Most commercial finite element programs have taken measures to
circumvent this kind of problem by adjusting the formulation.

E.4 Frequency domain analysis

As explained before, the analysis of the behavior of the rubber vibration iso-
lators is split into two parts. First the rubber isolator is preloaded statically
due to the weight of the source. This pre-deformation generally involves large
deformations of the rubber material, and it is assumed that this purely elas-
tic behavior is applied for a sufficiently long time so that no viscous effects
are present. Subsequently, the dynamic viscoelastic response about the pre-
deformed elastic state can be determined. A condition for this approach to
be valid is that the vibration amplitude is sufficiently small so that both the
kinematic and material response can be treated as linear perturbations about
the pre-deformed state.

The virtual work equation for the dynamic response is given by:

δWI = δWE + δWD, (E.39)

where δWE is the virtual work of the external forces (equal to the right-hand
side of equation (E.30)) and δWD the virtual work of the d’Alembert forces,
which can be determined by:

δWD = −
∫

V0

ρ0δv · üdV0, (E.40)

where ρ0 the mass density of the material in the initial configuration. The
dynamic vibrations are considered to be linear perturbations on the preloaded
configuration, and therefore equation (E.39) can be linearized:

△WI = △WE + △WD. (E.41)

The internal virtual work for a harmonic motion is determined with the help
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of equation (E.38) according to:

∆δWI =

∫

V

[
ℜ(δe) ℑ(δe) ℜ(δεvol) ℑ(δεvol)

]

:




ℜ(C̃) ℑ(C̃) Q|0 0

ℑ(C̃) −ℜ(C̃) 0 −Q|0
Q|0 0 ℜ(k̃) ℑ(k̃)

0 −Q|0 ℑ(k̃) −ℜ(k̃)


 :





ℜ(∆e)
ℑ(∆e)

ℜ(∆εvol)
ℑ(∆εvol)





− S0 :

[
2
[
ℜ(δe) ℑ(δe)

]
:

{
ℜ(∆e)
ℑ(∆e)

}
−
[
ℜ(δL) ℑ(δL)

]
:

{
ℜ(∆L)
ℑ(∆L)

}]
dV,

(E.42)

where:

ℜ(C̃) = (1 − ωℑ(g))CS
∣∣
0
, (E.43)

ℑ(C̃) = − ωℜ(g)CS
∣∣
0
, (E.44)

ℜ(k̃) = (1 − ωℑ(k)) k|0 , (E.45)

ℑ(k̃) = − ωℜ(k) k|0 . (E.46)

In these equations is CS
∣∣
0

the effective elasticity and is k|0 the effective bulk
modulus of the material after the pre-deformation and prior to the harmonic
vibration. The viscous material behavior is taken into account by the definition
of the terms ℜ(g), ℑ(g), ℜ(k) and ℑ(k) as a function of the frequency. The
terms are related to the shear and bulk moduli according to:

ωℜ(g) =
Gl

G∞
ωℑ(g) = 1 − Gs

G∞
, (E.47)

ωℜ(k) =
kl

k∞
ωℑ(k) = 1 − ks

k∞
, (E.48)

where Gl is the frequency dependent loss modulus, Gs is the frequency depen-
dent storage modulus, kl is the frequency dependent bulk loss modulus, ks is
the frequency dependent storage modulus, G∞ is the long-term shear modulus
and k∞ the long-term bulk modulus.
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Appendix F

Flowchart for material
parameters identification of
rubber

The flowchart of the procedure to identify the material parameters is shown
in Figure F.1. The procedure is divided into two stages, and for each stage a
different measurement of the whole isolator is necessary.

• The first stage is to determine the material parameters related with the
behavior of the rubber vibration isolator during static pre-deformation.
This behavior is determined by the so-called strain-energy function. For
filled rubbers, the Yeoh model is normally used as fitting function of
the strain-energy function. It consists of three coefficients and a bulk
modulus when compressibility is taken into account. The Yeoh parame-
ters are updated in an iterative optimization process, in such a way that
the numerically determined static force-displacement curve matches the
experimentally determined force-displacement curve. In this work the
FEM package Abaqus is used. For this procedure it is thus necessary
to perform experiments where the mount is deformed statically with
different preloads after which the reaction forces are measured for each
preload. When the optimization process has converged, the three Yeoh
coefficients are known and all the necessary material parameters needed
to calculate the static deformation are obtained.

• In the next stage the shear storage and loss modulus can be determined
with the use of the already determined Yeoh parameters. As in the first
stage, an optimization procedure is used. In this situation a measure-
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ment of the dynamic stiffness as a function of the frequency is used to
minimize the objective function. This means that for each frequency
step the shear moduli are updated in the numerical model in such a way
that a quadratic objective function, in terms of the difference between
both the real and imaginary parts of the experimentally and numerically
determined dynamic stiffnesses, is minimized. This process is repeated
for each frequency step. After convergence within a frequency step, a
first guess value of the shear modulus for the next frequency step can
be obtained with extrapolation of the values of the current and previ-
ously determined steps. At the end of this stage all necessary material
parameters are obtained to determine the dynamic stiffness of preloaded
rubber vibration isolators with a harmonic calculation process.
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Figure F.1: Flow chart to identify the rubber material properties with the help of exper-
imental data of the rubber isolator.
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Appendix G

Applying measurement errors
on FRF

The dynamic behavior of structures is normally described by Frequency Re-
sponse Functions. These functions describe the response at one or more loca-
tions of the structure for a certain harmonic excitation. This representation
has been used in the considered models in this work, but is also used to rep-
resent the dynamic behavior of structures with measured data. Normally,
these measurements are determined by means of mobility measurements on
the structure that is considered. These measurements are inevitably suscep-
tible to small measurement errors. Mobility or admittance measurements are
performed by exciting the structure with a measurable force resulting in a
vibrating structure. Sensors (like acceleration pickups) are attached to the
structure to measure the response at different locations. During the measure-
ments, it is possible to measure the ratio or transfer between the force and the
response for different frequencies, the so-called Frequency Response Function
(FRF). However, in practice there are a number of problems that introduce
errors like mechanical noise in the structure (also due to nonlinear behavior),
electrical noise in the instrumentation and limited analysis resolution.

Consider the following transfer function to be measured:

v = Hf, (G.1)

where v is the velocity measured at a location, f is the excitation force and
H is the FRF. All measured quantities are a function of the frequency. The
estimator that minimizes the effect of noise at the output (at the measured
velocity response) is [10]:

H1 =
Gfv

Gff
, (G.2)
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where H1 is the estimator of the FRF, Gfv is the cross spectrum between the
force and response and Gff is the auto spectrum of the force. The FRF and
both spectra are a function of the frequency. The spectra are determined by
an averaging procedure:

Gfv =
1

na

na∑

n=1

f∗v, (G.3)

Gff =
1

na

na∑

n=1

f∗f, (G.4)

where na is the number of averages and (.)∗ indicates the complex conjugate.
The auto spectrum is real, whereas the cross spectrum is complex, showing
the phase shift between the output and input.

During mobility measurements two types of errors occur:

• Random errors caused by noise, which are visible as random scatter in
the data,

• Bias errors caused by systematic errors, which appear in the measured
FRF as a deviation with the same magnitude and phase for each fre-
quency component.

When the FRF is determined according the procedure described by equa-
tion (G.2), the random noise in the output v decreases during the average
procedure and as the number of averages increases, H1 converges to the true
H. However, bias errors are not removed during this averaging process.

The procedure described above is simulated for the purpose of a sensitivity
analysis of the error criteria with weighting matrices for active isolation. The
‘exact’ FRF’s are determined as described in the previous sections with the
Finite Element model by using a unit force at each frequency. Both veloc-
ity and force spectra are corrupted by adding a complex noise signal in the
frequency domain. The velocity vector is corrupted in the following way:

v
˜

= v + e = Hf + e, (G.5)

where v is the ‘true’ response, ṽ the operational response and e the error. In
the simulations, ‘measurement noise’ was added to each response signal based
on a Gaussian additive noise model [129]:

v
˜

= v + c nn e j 2πnu , (G.6)
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where ṽ is the corrupted velocity response component, v is the true velocity
response component, c is a constant, nn is a normally distributed random
number with mean value 0 and standard deviation 1 and nu is a uniformly
distributed random number in the range 0−1. The exponent with the random
number nu acts on the normally distributed error, and results in an arbitrary
complex disturbance signal. The corrupted response signals (indicated by (.)

˜
)

are used to determine the cross spectrum and auto spectrum, after which the
FRF is calculated with the average procedure shown in equation (G.2).
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